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When a target appears in the peripher- 
al visual field, the eyes may make a rapid 
eye movement, or saccade, to bring its 
image onto the fovea. Most models (1) of 
the saccadic system assume that the ocu- 
lomotor system attempts to minimize 
retinal error, the location of the image of 
the target on the retina relative to the 
fovea. The retinal coordinates of the tar- 
get, computed by the visual system, 
could be used more or less directly by 
the oculomotor system to program a sac- 
cade with a particular amplitude and di- 
rection which will reduce retinal error. 
The saccade is thought to be ballistic, or 
programmed in advance for a certain di- 
rection and amplitude, since the move- 
ment cannot be modified or cancelled by 
visual information occurring later than 
about 50 msec before saccade onset (2). 
The superior colliculus, which has both 
retinocentrically organized visual and 
saccade-related neurons, has been sug- 
gested as a possible site for this sensory- 
motor interaction (3). 

A number of deficiencies of the reti- 
nocentric models have been noted (4). 
Saccades can be made to the source of a 
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sound in the dark or to a remembered 
target location in the dark (5). Clearly, a 
retinal error signal is not necessary to 
produce a saccade. Hallett and Light- 
stone (6) found that if a target is illumi- 
nated briefly during a saccade, the eyes 
will complete the saccade, and then look 
to the location of the target. Since eye 
movement occurred after target presen- 
tation, the correct localization of the tar- 
get in space could not be due to a retinal 
error signal alone. They suggested that 
targets for saccades can be localized by 
combining eye position information with 
retinal error, although it does not follow 
that this is the usual means of defining 
the target location. Finally, the hypothe- 
sis that the amplitude and direction of 
the saccade is predetermined has also 
been challenged. Zee et al. (7) reported 
that patients with abnormally slow sac- 
cades can interrupt saccades in midflight 
in response to a new visual stimulus. 

Robinson (4) and Zee et al. (7) have 
developed a spatial model of saccade 
generation based on these findings. In 
this model (i) targets for saccades are not 
localized relative to the fovea (that is, by 
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retinal error) but rather by combining 
eye position with retinal error to form a 
representation of the target in space (8); 
(ii) the command to the saccadic gener- 
ating system drives the eyes to a certain 
position in the orbit (9) and not just a cer- 
tain direction and amplitude; and (iii) 
saccades are not programmed in advance 
but are directed to a final position by 
continuous feedback of eye position in- 
formation. 

We have attempted to test the reti- 
nocentric and spatial models by examin- 
ing the interaction of visually elicited 
saccades and saccades produced by elec- 
trical stimulation of the monkey superior 
colliculus. Brief stimulation of the deep- 
er layers of this structure produces an 
apparently normal saccade of short la- 
tency with an amplitude and direction 
largely independent of starting eye posi- 
tion or stimulation variables (10). The 
retinocentric and spatial models predict 
different outcomes if electrical stimula- 
tion drives the eyes away from the fixa- 
tion point immediately before a saccade 
to a target. If, in preparation for a visual- 
ly elicited saccade, the signal to the sac- 
cadic generator is a command to move 
the eyes in a certain direction for a cer- 
tain distance, this movement should still 
be executed without modification just af- 
ter the stimulation-induced saccade. In 
this case, the gaze will miss the target lo- 
cation by a distance and direction nearly 
equal to the stimulation-induced sac- 
cade. If the command to the saccadic 
system is a signal to move the eyes to a 
certain position in the orbit (or in space), 
the stimulation-induced saccade should 
produce an automatic readjustment of 
the vector of the visually elicited saccade 
so as to direct the gaze to the target 
location. 

Two monkeys (a Macaca mulatta and 
a Macaca nemestrina) were trained to 
look at a visual target for a water reward. 
During training and stimulation sessions, 
the monkey's head was immobilized by a 
lightweight, permanently implanted head 
holder. The target was a small (0.1?) light 
spot on a short-persistence, large-screen 
oscilloscope (11) or a green light-emitting 
diode. Horizontal and vertical eye posi- 
tion was measured with a sensitivity of at 
least 0.25? through the use of an im- 
planted electromagnetic search coil (12). 
A computer (PDP-81) controlled the po- 
sition of the target spot, triggered the 
electrical stimulator, monitored eye po- 
sition, delivered reinforcement when 

retinal error) but rather by combining 
eye position with retinal error to form a 
representation of the target in space (8); 
(ii) the command to the saccadic gener- 
ating system drives the eyes to a certain 
position in the orbit (9) and not just a cer- 
tain direction and amplitude; and (iii) 
saccades are not programmed in advance 
but are directed to a final position by 
continuous feedback of eye position in- 
formation. 

We have attempted to test the reti- 
nocentric and spatial models by examin- 
ing the interaction of visually elicited 
saccades and saccades produced by elec- 
trical stimulation of the monkey superior 
colliculus. Brief stimulation of the deep- 
er layers of this structure produces an 
apparently normal saccade of short la- 
tency with an amplitude and direction 
largely independent of starting eye posi- 
tion or stimulation variables (10). The 
retinocentric and spatial models predict 
different outcomes if electrical stimula- 
tion drives the eyes away from the fixa- 
tion point immediately before a saccade 
to a target. If, in preparation for a visual- 
ly elicited saccade, the signal to the sac- 
cadic generator is a command to move 
the eyes in a certain direction for a cer- 
tain distance, this movement should still 
be executed without modification just af- 
ter the stimulation-induced saccade. In 
this case, the gaze will miss the target lo- 
cation by a distance and direction nearly 
equal to the stimulation-induced sac- 
cade. If the command to the saccadic 
system is a signal to move the eyes to a 
certain position in the orbit (or in space), 
the stimulation-induced saccade should 
produce an automatic readjustment of 
the vector of the visually elicited saccade 
so as to direct the gaze to the target 
location. 

Two monkeys (a Macaca mulatta and 
a Macaca nemestrina) were trained to 
look at a visual target for a water reward. 
During training and stimulation sessions, 
the monkey's head was immobilized by a 
lightweight, permanently implanted head 
holder. The target was a small (0.1?) light 
spot on a short-persistence, large-screen 
oscilloscope (11) or a green light-emitting 
diode. Horizontal and vertical eye posi- 
tion was measured with a sensitivity of at 
least 0.25? through the use of an im- 
planted electromagnetic search coil (12). 
A computer (PDP-81) controlled the po- 
sition of the target spot, triggered the 
electrical stimulator, monitored eye po- 
sition, delivered reinforcement when 
tracking criteria were met, and produced 
on-line graphic displays of data and stim- 
ulus conditions. A description of the 
training procedures and apparatus has 
been published (13). The monkeys were 

tracking criteria were met, and produced 
on-line graphic displays of data and stim- 
ulus conditions. A description of the 
training procedures and apparatus has 
been published (13). The monkeys were 

0036-8075/80/0606-1163$00.50/0 Copyright ? 1980 AAAS 0036-8075/80/0606-1163$00.50/0 Copyright ? 1980 AAAS 

Saccades Are Spatially, Not Retinocentrically, Coded 

Abstract. Most models of the saccadic eye movement system imply that saccades 
are programmed for a certain distance and direction. Electrical stimulation of the 
brain was used to move the eyes of monkeys just before saccades to visual targets. 
Despite the stimulation-induced perturbation, saccades brought gaze to the target 
locations. This compensation indicates that saccades are coded to direct the eyes to 
a certain position in the orbit (or in space). 
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turned the gaze to F (Fig. lb). A saccade 
to a visual target at location A (15? di- 
rectly above F) is shown in Fig. lc. If a 
saccade to S is induced by electrical 
stimulation just before the visually elic- 
ited saccade, a retinocentric model of the 
saccadic system would predict that the 
15? upward saccade should still occur, 
causing a saccade from point S to A' 
(Fig. la). In the course of more than 
10,000 trials at 29 stimulation sites, this 
result was never obtained. Instead, the 
stimulation-induced saccade was followed 
by a short-latency saccade from point S 
directly to location A (Fig. ld). 

Although there was often a period of 
40 to 80 msec between the end of a stim- 
ulation-induced saccade and the begin- 
ning of the saccade to the location of the 
target, it was possible to time the stimu- 
lation so that the saccade to the target 
location immediately followed the stimu- 
lation-induced saccade. On other trials, 
the electrical stimulation interrupted the 
visually elicited saccade (Fig. 2). Except 
for the fixation and target spots, the 
room was in total darkness. For this se- 
ries of trials, the visual target was 15? to 
the right of the initial fixation point. A 
visually elicited saccade to this target is 
seen in Fig. 2a. Electrical stimulation of 
a site in the right superior colliculus 
drives the eyes downward and to the left 
(Fig. 2b). Since fixation was not required 
during this stimulation trial, the eyes did 
not return to the original position. 

Figure 2c shows a trial in which a sac- 
cade to the location of the visual target 
occurred immediately after a stimula- 
tion-induced saccade. Since the ampli- 
tude of the stimulation-induced saccade 
in Fig. 2c is smaller than that in Fig. 2b, 
the saccade to the visual target location 
may have interrupted the stimulation-in- 
duced saccade. Nonetheless, a saccade 
brought the gaze to the target location. 
Figure 2d shows a visually elicited sac- 
cade interrupted in midflight by a stimu- 
lation-induced saccade. Regardless of 
the point in space to which stimulation 
drove gaze, an accurate, shlirt-latency 
saccade to the position of the target was 
made. 

These results have implications for 
models of the saccadic system. Saccades 
to the actual target positions on stimula- 
tion trials (Figs. Id and 2, c and d) could 
not have been directed by retinal error 
alone since all targets were turned off be- 
fore any saccade. Since the occurrence 
of electrical stimulation on any trial was 
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to the actual target positions on stimula- 
tion trials (Figs. Id and 2, c and d) could 
not have been directed by retinal error 
alone since all targets were turned off be- 
fore any saccade. Since the occurrence 
of electrical stimulation on any trial was 
unpredictable, the compensation for the 
stimulation-induced saccade could not 
be determined in advance. Targets 
were not localized in space with respect 
to some visual frame of reference, since 
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localization was about as accurate in the 
dark as in the light. It follows, then, that 
saccades directed to the positions of tar- 
gets in space must have been localized 
by combining retinal error with an extra- 
retinal eye position (14) signal., Since the 
compensation for eye position is precise 
even when visually elicited saccades are 
interrupted in midflight (15), the eye po- 
sition signal must be derived from the ac- 
complished rather than intended move- 
ment. That monkeys can localize targets 
accurately after saccades induced by 
stimulation of the superior colliculus in- 
dicates that the eye-position signal is de- 
rived from a point efferent from the col- 
liculus. 

Thus, our results are compatible with 
the spatial view of the saccadic system 
proposed by Hallett and Lightstone (6), 
Robinson (4), and Zee et al. (7). Sac- 
cades bring the eyes to a predetermined 
position in the orbit (or space) and do not 
drive the eyes a predetermined distance 
aid direction. 
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tial that develops during the foreperiod 
between a warning stimulus (SI) and a 
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(1). It has usually been held to reflect ex- 
pectation and preparation during the 
foreperiod, and as such has been consid- 
ered to be a physiological index of men- 
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tal activity. Recent findings suggest that 
the CNV may represent an admixture of 
two or more waves that are seen in com- 
bination when recorded at the traditional 
short foreperiod of 1 or 2 seconds. Some 
evidence for this may be adduced from 
variations in the appearance of the CNV 
brought about by changes in the task, 
motor response, or recording site (2-4). 
Additional evidence comes from situa- 

tal activity. Recent findings suggest that 
the CNV may represent an admixture of 
two or more waves that are seen in com- 
bination when recorded at the traditional 
short foreperiod of 1 or 2 seconds. Some 
evidence for this may be adduced from 
variations in the appearance of the CNV 
brought about by changes in the task, 
motor response, or recording site (2-4). 
Additional evidence comes from situa- 

Synthesis of the Contingent Negative Variation Brain Potential 
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Abstract. Slow shifts in brain potential (commonly called the contingent negative 
variation), obtained during a warned reaction-time task with a foreperiod of I sec- 
ond, were compared with waveforms synthesized by the addition of separately ob- 
tained potentials associated with individual (nonpaired) sensory stimuli and self-initi- 
ated motor movements. The synthesized waveforms match closely the actual contin- 
gent negative variation, suggesting that it is constituted largely of separate, 
noncontingent elements related to sensory and motor processes. 
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