
difference is accepted by M. The prob- 
lem of correlation of traits has not been 
ignored, however. Rather, it has been 
minimized by working with a small num- 
ber of traits (8) and ensuring that they 
represent all major parts of the body. Be- 
cause the M statistic eschews correction 
for covariance, it facilitates the study of 
those many species for which few speci- 
mens are available in museum collec- 
tions (9). 

Responding to Atchley's comment on 
ratios, we recognize that the use of ratios 
alters the correlation structure of the 
data. As our goal was to compare the 
shapes of organisms, it was essential to 
remove trait correlations due to variation 
in body size. The ratio method achieves 
this. According to the criteria of Ander- 
son and Lydic, our use of ratios is war- 
ranted (10). 

While M may not be a perfect distance 
metric, it seems more valuable in prac- 
tice than Mahalanobis D for broad com- 
parative studies of evolution at the orga- 
nismal level. This impression is rein- 
forced by the observation that M is cor- 
related more highly with rank in the 
taxonomic hierarchy than is D (11). We 
assume that rank in the hierarchy sum- 
marizes judgments made by earlier gen- 
erations of taxonomists about the degree 
of anatomical difference between orga- 
nisms. The weaker correlation of D with 
taxonomic rank is ascribed to the insta- 
bility of D values calculated from com- 
parisons involving small numbers of indi- 
viduals per population. 

Although we consider Mahalanobis D 
to be less useful than the M statistic for 
our type of research, the Mahalanobis 
distance between humans and chim- 
panzees (Table 1) is large compared to 
that between species of frogs. The con- 
clusion reached by use of the M statistic 
(3) is thus bolstered by the results ob- 
tained with the Mahalanobis method. 
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Lateral Advection-Stirring 
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Although the report of Amos and Ge- 
rard (1) is tantalizing, the temperature 
and density data are incorrectly inter- 
preted. These investigators state that 
bottom water at 40?26.2'N, 56?55.8'W 
(station Lynch 47-186) in 5200 m of water 
has the properties of water found about 
1000 m higher up in the same water col- 
umn and suggests turbidity current activ- 
ity. Their figure 2b (1) of near-bottom 
vertical profiles includes a break in the 
depth scale to show how the values of 
salinity S, temperature T, density o.t, and 
dissolved 02 content at the ocean bottom 
are also found from 4000 to 4300 m. The 
problem with this interpretation is that 
neither T nor ot are conservative proper- 
ties in the deep ocean (2, chap. 3, p. 
1087). 

The adiabatic gradient is indicated in 
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The adiabatic gradient is indicated in 

their figure 2b for the deepest level; the 
value shown (0.096?C per kilometer) is, 
however, incorrect (2, p. 63; 3). In fact, 
the adiabatic temperature change associ- 
ated with the downslope advection advo- 
cated for the 2.32?C water found at 
- 4200 m amounts to a warming of 
0.13?C. A problem associated with using 
the nonconservative density function o.t 
in the deep ocean is that profiles of o.t ap- 
pear unstable. This is also illustrated in 
their figure 2b; apparently less dense wa- 
ter is found beneath denser water. This 
artifact of the equation of state of sea- 
water can be circumvented if one uses a 
conservative density function referenced 
to a nearby pressure surface; usually the 
4000-dbar surface is used as a reference 
for the density function, o-4 (4). If poten- 
tial temperature 0 and a properly refer- 
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enced density function are used, the 
properties of the bottom water found by 
Amos and Gerard are not those of the 
water - 1000 m above. 

Amos and Gerard also incorrectly 
state that Geochemical Ocean Sections 
Study (GEOSECS) station 28 (39?N, 
43?59'W) shows a steplike increase in 
light-scattering near the bottom. The 
profiles of 0, S, -4, and light-scattering at 
this station are reproduced in Fig. 1. In 
fact, the bottom layer has a lower level 
of light-scattering than the water mass 
immediately above. A turbidity current 
cannot explain the profiles found at 
GEOSECS station 28. In contrast, a den- 
sity current of Denmark Straits Norwe- 
gian Sea overflow characteristics is seen 
intruding beneath water of North Atlan- 
tic Deep Water characteristics. 

Similar anomalous layers, all at 0 - 
1.81?C, with Denmark Straits overflow 
characteristics, have been identified at 
many stations throughout the western 
North Atlantic (5). The anomalous water 
found at the bottom at station Lynch 47- 
186 (1) and GEOSECS station 28 (6) as a 
density current is also seen as an intru- 
sive feature away from the basin margins 
in deeper water. 

Is it not possible that the high turbidity 
found by Amos and Gerard is due to re- 
suspension by high mesoscale currents 
in the area? They found that the current 
at 1.5 m above bottom averaged 23 cm/ 
sec. Schmitz reports distributions of 
mean eddy kinetic energy along 55?W 
(7). At 40?30'N, 55?W (2? east of station 
Lynch 47-186), a mean eddy kinetic ener- 
gy of 80 cm2 sec2 was found at a depth of 
4000 m. Velocities as high as 50 cm/sec 
were recorded (8). 

LAURENCE ARMI 
Woods Hole Oceanographic Institution, 
Woods Hole, Massachusetts 02543 
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We acknowledge that Armi's ex- 
planation (1) of the anomalous condi- 
tions is a valid and perhaps less specula- 
tive alternative than our own (2). We 
concur with Armi that the nonconserv- 
ative nature of in situ temperature 
and density (o-t) in the deep ocean 
make these properties unsuitable for wa- 
ter mass tracing. It was our intention to 
show that properties at the bottom at sta- 
tion Lynch 47-186 (including the dis- 
solved oxygen content) are similar to 
those at the bottom higher up on the con- 
tinental slope [figure 2c in (2)]; we stated 
that these properties trend toward those 
of Denmark Strait water. The use of a 
potential density profile instead of (-t in 
our figure 2b would have been prefer- 
able, and we did not intend to imply that 
the water column was unstable. We were 
in error in quoting the adiabatic gradient 
as being 0.096?C per kilometer (figure 
2b); it should be 0.13?C per kilometer. 

In defense of our hypothesis, we 
would point out that downslope advec- 
tion does occur in several parts of the 
world's oceans and obviously did occur 
at this location during the 1929 earth- 
quake (3). Our suggestion that turbidity 
current activity is responsible for the 
anomalous conditions at the bottom at 
station Lynch 47-186 is based upon the 
extraordinary amount of suspended ma- 
terial found there. The amount (-5000 
gtg/liter) exceeds by two orders of magni- 
tude that found at Geochemical Ocean 
Sections Study (GEOSECS) station 28 
[figure 1 in (1)] and, to our knowledge, is 
one of the highest concentrations of sus- 
pended material yet found in the deep 
ocean. We pointed out (2) that the addi- 
tion of such quantities of material will in- 
crease the density of the sediment-water 
suspension by an amount comparable to 
the density effects contributed by the 
temperature-salinity changes in the near- 
bottom water column. 
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The source that we used for GEO- 
SECS station 28 nephelometer data was 
figure 2 in (4). Compared to Armi's figure 
1, Broecker and Bainbridge's data from 
the same original station profile look 
considerably different. A drop in light- 
scattering is shown in figure 2b in (4) but, 
compared to the increase in light-scatter- 
ing immediately above, this decrease is 
small. Broecker and Bainbridge may not 
have presented their data referenced to a 
zero ordinate on the arbitrary scale of 
units used by the GEOSECS nephelome- 
ter. This would enhance the apparent 
increase in light-scattering that we re- 
fer to. 

More recent measurements of near- 
bottom ocean turbidity were taken as 
part of the High-Energy Benthic Bound- 
ary Layer Experiment (HEBBLE) pro- 
gram in an area of the Nova Scotia conti- 
nental rise about 500 km west of our re- 
ported stations (5). Results from two 
cruises (6) in 1979 indicate a very strong 
bottom nepheloid layer in depths of 
about 5000 m, with particulate concen- 
trations about twice the values reported 
in (2). These high concentrations are as- 
sociated with strong but variable bottom 
contour currents. 
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have presented their data referenced to a 
zero ordinate on the arbitrary scale of 
units used by the GEOSECS nephelome- 
ter. This would enhance the apparent 
increase in light-scattering that we re- 
fer to. 

More recent measurements of near- 
bottom ocean turbidity were taken as 
part of the High-Energy Benthic Bound- 
ary Layer Experiment (HEBBLE) pro- 
gram in an area of the Nova Scotia conti- 
nental rise about 500 km west of our re- 
ported stations (5). Results from two 
cruises (6) in 1979 indicate a very strong 
bottom nepheloid layer in depths of 
about 5000 m, with particulate concen- 
trations about twice the values reported 
in (2). These high concentrations are as- 
sociated with strong but variable bottom 
contour currents. 
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Beach (1) has reported that biting be- 
havior in the unfed mosquito Anopheles 
freeborni is inhibited by the injection of 
ecdysterone, an insect hormone that is 
produced by the ovaries during oogene- 
sis (2). This suggested role of ecdyste- 
rone as a behavioral inhibitor warrants a 
closer examination. 

Central to Beach's hypothesis is the 
report (2) that inAedes aegypti, ecdyste- 
roids reach a peak of approximately 275 
pg per female at 18 hours after a blood 
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meal. By 30 hours after a blood meal the 
concentration returns to its low pre- 
blood meal level. Since this assay was 
performed on whole body extracts, it is 
not known how much, or indeed if any, 
hormone occurs outside the ovary. In 
Ae. aegypti, there is no humoral inhibi- 
tion of either biting or host-seeking when 
ecdysteroid concentrations have peaked; 
the first indications of host-seeking inhi- 
bition are at 30 hours after a blood meal, 
with the greatest inhibition occurring be- 
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