
in humans and animals after damage to 
the AV nucleus and related structures 
(13). 

Finally, we hypothesize that the late- 
forming neuronal discrimination relayed 
from the AV nucleus back to the superfi- 
cial laminae may inhibit ongoing neuron- 
al discrimination acquired in the deep 
laminae in the early stages of acquisition. 
Thus, once neurons of the AV nucleus 
are able to produce their own discrimi- 
native activity, feedback from the AV 
nucleus may promote disengagement of 
the cingulate cortex from the discrimina- 
tion process. 

Two sources of evidence suggested 
such disengagement. First, 19 of the 22 
cortical records that indicated acquired 
neuronal discrimination at early stages of 
behavioral acquisition showed its loss in 
the late stages. Second, only neurons in 
the AV nucleus manifested reversal of 
the original discriminative activity dur- 
ing behavioral reversal training (7). 
Thus, relegation of the discriminative re- 
sponse by neurons in the deep laminae to 
the AV nucleus may free the deep la- 
minae to process new discriminative 
problems. 
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(1966); G. J. Thomas, G. Hostetter, D. J. Bark- 
er, ibid. 2, 230 (1967). Rats and cats have little 
difficulty in reacquiring an avoidance habit when 
cingulate lesions are induced during the reten- 
tion interval, after behavioral acquisition is com- 
plete [R. Y. Moore, J. Comp. Physiol. Psychol. 
57, 65 (1964); B. M. Slotnick, Neuropsychologia 
9, 61 (1971); B. Eckersdorf, Acta Physiol. Pol. 
Engl. Transl. 2, 105 (1974)]. Our data suggest an 
explanation for this outcome: AV nucleus, but 
not cingulate cortex, mediates discrimination 
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regard to the radiative heat load. 

Cartwright and Harrold (1) proposed 
that plumage coloration could be impor- 
tant to thermal regulation in birds, since 
color should influence the absorptivity of 
solar radiation. Several investigators (2, 
3) have conducted metabolic studies in 
the laboratory to show that birds when 
below thermal neutrality can use solar 
radiation to allieviate thermal stress. 
Monteith (4) pointed out that "reflec- 
tivity is an important discriminant in the 
heat balance of animals but the relation- 
ship between coat color and radiative 
heat load is complex." There is still a 
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question as to whether dark or light plu- 
mage is more effective in the utilization 
of direct solar radiation. Several studies 
(2, 5-7) have shown dark coloration to be 
more effective in the use of solar radia- 
tion, while others (8) have shown light 
coloration to be more effective in radia- 
tive heat gain. Further, convective cool- 
ing (9) differentially affects the radiative 
heating of dark and light plumages, so 
that at low wind speeds black plumages 
acquire a greater radiative heat load than 
do white plumages, but the heat loads of 
black and white plumages rapidly con- 
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Table 1. Heat flow through feathers as a function of color, angle, and air temperature; G, gray; 
W, white. 

(Ca Color W m-2 Tskin Tr Tsurface N 
(OC) (OC) (Oc)* (oC) 

90? angle 
27.0 G 119.1 + 10 40.0 37.3 69.7 3 
27.0 W 61.2 39.5 37.6 62 2 
20.0 G 102.6 + 11 40.2 36.7 69.5 4 
20.0 W 46.0 + 10 38.8 37.0 57.2 4 
20.0t G 54.6 39.5 36.5 67 2 
20.0t W 14.5 36.7 36.5 48.5 2 
10.0 G 71.0 + 5 38.5 36.6 62 3 
10.0 W 35.5 38.2 36.5 49.5 2 

135? angle 
27.3 G 50.6 + 6 38.4 37.0 52.5 3 
27.0 W 32.9 38.1 37.1 43.9 3 
20.0 G 33.5 + 4 38.1 36.8 48.0 3 
20.0 W 21.0 + 7 38.1 37.1 41.0 3 
20.0t G 25.6 37.7 37.0 45.0 2 
20.Ot W 9.9 36.5 36.5 36.5 2 
10.0 G 10.5 36.9 36.3 44.0 2 
10.2 W 7.2 ? 1 36.2 35.5 27.0 3 

160? angle 
27.9 G 21.0 + 9 37.4 36.9 43.7 4 
27.0 W 17.8 + 5 37.1 36.8 39.5 4 
20.0 G 2.0 + 1 36.8 37.0 36.5 3 
20.0 W 4.0 + 5 36.6 36.8 35.7 4 
20.0t G 0 35.0 37.0 35.0 2 
20.0t W 0 36.0 37.0 29.5 2 
10.0 G 0 35.0 36.7 32.0 2 
10.0 W 0 36.4 36.5 32.0 3 

*Radiation passed through 1 cm of water. tTemperature of reservoir. 
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verge as wind speed is increased and 
feathers are erected. Not only are wind, 
temperature, and color important to the 
radiative heat load but the posture (angle 
of incidence) of the animal is also impor- 
tant (6). Since posture seems to be im- 
portant to the energy balance of the ani- 
mal, we conducted experiments to inves- 
tigate the effects of posture (angle of 
incidence), air temperature, and color on 
heat flow through the plumage layer. We 
therefore considered the effect of pos- 
ture on the utilization of direct solar radi- 
ation, and the effect of the interaction of 
color and posture to maintain thermal 
balance. 

We measured the heat flow through 
patches of plumage taken from the breast 
and the back of adult herring gulls (Larus 
argentatus). The white breast plumage 
has an absorptivity of 15 percent while 
the gray back plumage has an absorp- 
tivity of 50 percent. Heat flow was mon- 
itored with a heat flow tranducer 
(Thermonetic) placed between the under 
side of the plumage and simulated bird 
(Fig. 1). The mean temperature of the 
water reservoir (Tr) within the simulated 
bird was 36.7? + 0.4?C. The radiation 
source was a clear-end infrared (General 
Electric) bulb (250 W). We monitored 
the heat flow through the feathers at 
three different angles (90?, 135?, and 
160?) with respect to the radiation source 
(Fig. 1), and at three different air temper- 
atures: 10?, 20?, and 27?C. The total radi- 
ation level was 1115.6 W m-2. Of the to- 
tal, 697.3 W m-2 was between 400 and 
3200 nm. The remaining 418.3 W m-2 
was between 3.2 and 60 ,tm. The radia- 
tion levels were determined by a glass- 
domed pyranometer (sensitive to 3.2 
ftm) and a polyurethane-domed radiome- 
ter with unidirectional attachment (sensi- 
tive to 60 aum). The experiment was re- 
peated at 20?C with a centimeter of water 
(maintained at 20?C) between the radia- 
tion source and the plumage (Fig. 1); 
thus only a small amount of radiation 
(697.3 W m-2; 400 to 1400 nm) reached 
the dorsal surface of the plumage. The 
distal ends of the feathers pointed away 
from the radiation source. As the angle 
of incidence was increased, the distance 
from the light source to the feather sur- 
face was maintained constant. 

Prior to any experimentation, we de- 
termined the insulating quality of each 
plumage patch by using the heat flow 
transducer to monitor the heat transfer 
through the feather layers while they 
rested on a hot plate. The white plumage 
with a natural fluff was twice as good an 
insulating layer as the gray plumage with 
a natural fluff (23.7 W m-2 and 49.3 W 
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