
ber of such sections, cut at random ori- 
entations through many small crystals in 
a pellet, are shown in Fig. 2. Arrays of 
particles are clearly seen. These micro- 
graphs, including others not shown, are 
strongly suggestive of a cubic lattice. 
Some, but not all, micrographs show va- 
cancies in the lattice, reminiscent of the 
vacancies seen in polyoma crystals (4). 
Such vacancies may adversely affect the 
quality of the diffraction pattern. 

The most interesting aspect of SV40 
structure is the minichromosome with its 
constituent nucleosomes. Since the 
SV40 capsid has icosohedral symmetry, 
it can be placed in a crystal lattice in 60 
equivalent orientations. Since there are 
not 60 nucleosomes per particle, the nu- 
cleosomes themselves cannot have the 
symmetry of the capsid and must be ro- 
tationally disordered in the crystal. Be- 
cause of this disorder, nucleosomes in 
the image will appear rotationally aver- 
aged, and will therefore be deficient in 
detail, or perhaps effectively invisible. A 
low-resolution structure determination, 
which could be greatly expedited by the 
use of noncrystallographic symmetry 
(16) would be sufficient to reveal whether 
any chromatin is likely to be seen. 
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Interaction of Laminae of the Cingulate Cortex with the 

Anteroventral Thalamus During Behavioral Learning 

Abstract. Neurons in deep laminae of the rabbit cingulate cortex develop discrimi- 
native activity at an early stage of behavioral discrimination learning, whereas neu- 
rons in the anteroventral nucleus of thalamus and neurons in the superficial cortical 
laminae develop such activity in a late stage of behavioral learning. It is hypothe- 
sized that early-forming discriminative neuronal activity, relayed to anteroventral 
neurons via the corticothalamic pathway, contributes to the construction of changes 
underlying the late-forming neuronal discrimination in the anteroventral nucleus. 
The resultant late discriminative activity in the anteroventral nucleus is then relayed 
via the thalamocortical pathway back to the superficial cortical laminae, promoting 
disengagement of cortex from further task-processing. 
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A long-standing and intransigent prob- 
lem in neuroscience has been to identify 
brain systems mediating learning pro- 
cesses. We now report results of studies 
of multiple-unit activity recorded from 
the cingulate area of the cerebral cortex 
of the rabbit during learning of discrimi- 
native avoidance behavior. The results 
indicate a differential involvement of su- 
perficial and deep laminae in mediating 
acquired discrimination. 

The cingulate cortex is reciprocally in- 
terconnected with the anteroventral 
(AV) nucleus of thalamus (1). Our results 
also shed light on the interaction be- 
tween the cortical laminae and the AV 
nucleus during learning. 

The details of procedure have already 
been presented (2). During avoidance 
training, we successively presented (in a 
random order) two tone stimuli, the posi- 
tive conditional stimulus (CS+) and the 
negative conditional stimulus (CS-). 
For each rabbit, the CS+ was either a 1- 
or an 8-kHz tone (80 dB relative to 
0.0002 dyne/cm2, with a rise time of 3 
msec); the CS- was the other tone. The 
assignment of frequencies to rabbits was 
counterbalanced. Onset of the CS+ was 
followed after 5 seconds by constant- 
current footshock (1.5 mA) delivered to 
the rabbit through the grid floor of a ro- 
tating wheel apparatus (3), and termi- 
nated by locomotion. Locomotion dur- 
ing the CS+ terminated it and prevented 
footshock. The CS- was never followed 
by footshock. Thus, the rabbits learned 
to avoid footshock by locomoting to the 
CS+, and they learned not to respond to 
the CS-. Forty-six rabbits were each 
given 120 trials daily (60 with each stimu- 
lus) until behavioral discrimination 
reached criterion (4). A subset of 29 rab- 
bits received additional sessions of train- 
ing (overtraining). Before training, each 
rabbit received a preliminary training 
session in which tones and the footshock 
were presented unpaired to provide con- 
trol data for evaluating training-induced 
acquisition of discriminative neuronal 
and behavioral activity (5). In order to 
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observe the relationship between neu- 
ronal activity and behavioral acquisition, 
we focused exclusively on neuronal re- 
sults obtained at certain behaviorally de- 
fined stages of acquisition. The stages 
were preliminary training (PT), the first 
exposure (FE) to conditioning, the ses- 
sion of first significant (FS) behavioral 
discrimination (6), the session in which 
the stringent criterion (Cr) of behavioral 
discrimination was attained, and over- 
training. Significant behavioral discrimi- 
nation did not occur during FE. 

Each of the rabbits had a single per- 
manently indwelling metal microelec- 
trode (range of tip lengths, 10 to 60 /im) 
in cingulate cortex, and 14 of the rabbits 
had such an electrode in the AV nucleus. 
Throughout behavioral training, unit ac- 
tivity was fed into high-pass active filters 
(bandwidth, 500 to 10,000 Hz) and sub- 
sequently into pulse-height discrimina- 
tors set to pass only the three or four 
largest neuronal spikes. Outputs of the 
discriminators were fed into a computer 
programmed to process the neuronal 
data and to control the behavioral exper- 
iment. The computer calculated numeri- 
cal scores for each session, representing 
the average frequency of neuronal firing 
at various periods after CS onset, nor- 
malized with respect to the pre-CS base- 
line. This report concerns the scores rep- 
resenting neuronal activity in the second 
through the sixth periods of 100 msec. 
Results of a fine-grained analysis of 
scores for the first 200 msec will be pre- 
sented elsewhere (7). 

Inspection of the brain sections con- 
taining the electrode tracks revealed that 
the recording tips were localized in each 
of the six laminae that have been distin- 
guished within the cingulate cortex (8). 
An established principle of brain organi- 
zation states that the superficial laminae 
(I to IV) of the cerebral cortex are re- 
gions which receive axonal input from 
other brain regions, whereas the deep 
cortical laminae (V and VI) are regions 
of origin of axonal outflow to other re- 
gions (9). Recent anatomical research (1) 
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indicates that the interconnections of 
rabbit cingulate cortex and AV nucleus 
conform to this principle. Twenty-eight 
of the 46 cortical records were in one of 
the deep (output) laminae, and 18 were in 
one of the superficial (input) laminae. 

The neuronal scores obtained from 
each rabbit were classified with regard to 
presence versus absence of acquired 
neuronal discrimination, defined as a 
training-induced enhancement of the 
neuronal response to the CS+, relative 
to the response evoked by the CS- (10). 
Of the 46 cortical records, 13 did not 
show discriminative activity in any stage 
of acquisition. Of these, seven were in 
the superficial laminae and six were in 
the deep laminae. Of the remaining 33 
(discriminating) records, early-discrimi- 
nating neuronal records (during FE or 
FS) predominated in the deep laminae, 
and late-discriminating records (during 
Cr or overtraining) predominated in the 
superficial laminae (Fig. 1). The associa- 
tion between stage in which first neuron- 
al discrimination was manifested, and 
position in the cortex was significant [X2 
(1) = 11.50, P < .001]. 

Next, we computed analysis of vari- 
ance on data of the discriminating corti- 
cal records, using depth of electrode 
placement as a two-level factor. The 
analysis yielded a significant interaction 
of training stage, stimulus, and cortical 
depth [F (12, 372) = 1.76; P = .05]. 
Separate analysis of the data from the 
AV nucleus yielded a significant interac- 
tion of stage and stimulus [F (3, 36) = 
13.11; P < .001]. Subsequent least sig- 
nificant difference tests (11) of the in- 
teraction means revealed that the mean 
neuronal response to the CS+ was 
greater than that to the CS- in the 
deep laminae during FE, FS, and Cr 
(Fig. 2A). In the superficial laminae 
and in the AV nucleus, significant dis- 
criminations occurred at all periods 
in Cr but not during FE or FS (Fig. 2, B 
and C). There were no significant neu- 
ronal discriminations in preliminary 
training, except for the significant "re- 
verse" discrimination during period 5 in 
the superficial laminae (Fig. 2B). Each 
brain locus manifested significant dis- 
crimination at all periods in each stage of 
overtraining. Thus, results from the anal- 
ysis of variance corroborated the con- 
clusion derived from classification of in- 
dividual records. Deep cortical laminae 
manifested early-forming neuronal dis- 
crimination, whereas superficial laminae 
and the AV nucleus manifested late- 
forming discrimination during the course 
of behavioral discrimination learning. 

The prime intent of this report is to 
convey the cortical laminar differences 
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Fig. 1. Relation of cortical layer to first dis- 
crimination. 

in the acquisition of neuronal discrimina- 
tion during behavioral learning. We have 
tentatively assumed that early neuronal 
discrimination formed in the deep (out- 
put) laminae of the cingulate cortex is re- 
layed to the AV nucleus via the corti- 
cothalamic pathway. After the discrimi- 
native input from cortex acts upon 
principal neurons of the AV nucleus for 
some time, the latter set of neurons form 
their, own discriminative response, 
which is immediately relayed back via 

the thalamocortical pathway to the su- 
perficial (input) laminae of cortex. 

Because the discriminative activity in 
the deep laminae was acquired during 
FE, prior to behavioral discrimination, 
we hypothesize that the deep laminae 
may be loci for acquisition of the neuron- 
al code for the associative significance of 
the conditional stimuli. The acquired 
code is presumed to be critical for the 
rabbit's ability to use the CS+ as a cue 
for the avoidance response. This hypoth- 
esis receives support from studies in- 
dicating that acquisition of stimulus-cued 
aversively motivated behavior is im- 
paired in rats and cats with induced dam- 
age to the cingulate cortex (12). 

Because behavioral discrimination 
predated neuronal discrimination in the 
AV nucleus, the activity of the AV nu- 
cleus may not be viewed as a possible 
mediator of behavioral acquisition. 
Rather, it is more reasonable to suppose 
that the late-developing discriminative 
activity of the AV nucleus may have re- 
flected processes relevant to retention of 
the neuronal code for stimulus signifi- 
cance. This interpretation is consistent 
with observations of deficient retention 
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in humans and animals after damage to 
the AV nucleus and related structures 
(13). 

Finally, we hypothesize that the late- 
forming neuronal discrimination relayed 
from the AV nucleus back to the superfi- 
cial laminae may inhibit ongoing neuron- 
al discrimination acquired in the deep 
laminae in the early stages of acquisition. 
Thus, once neurons of the AV nucleus 
are able to produce their own discrimi- 
native activity, feedback from the AV 
nucleus may promote disengagement of 
the cingulate cortex from the discrimina- 
tion process. 

Two sources of evidence suggested 
such disengagement. First, 19 of the 22 
cortical records that indicated acquired 
neuronal discrimination at early stages of 
behavioral acquisition showed its loss in 
the late stages. Second, only neurons in 
the AV nucleus manifested reversal of 
the original discriminative activity dur- 
ing behavioral reversal training (7). 
Thus, relegation of the discriminative re- 
sponse by neurons in the deep laminae to 
the AV nucleus may free the deep la- 
minae to process new discriminative 
problems. 
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(1966); G. J. Thomas, G. Hostetter, D. J. Bark- 
er, ibid. 2, 230 (1967). Rats and cats have little 
difficulty in reacquiring an avoidance habit when 
cingulate lesions are induced during the reten- 
tion interval, after behavioral acquisition is com- 
plete [R. Y. Moore, J. Comp. Physiol. Psychol. 
57, 65 (1964); B. M. Slotnick, Neuropsychologia 
9, 61 (1971); B. Eckersdorf, Acta Physiol. Pol. 
Engl. Transl. 2, 105 (1974)]. Our data suggest an 
explanation for this outcome: AV nucleus, but 
not cingulate cortex, mediates discrimination 
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regard to the radiative heat load. 

Cartwright and Harrold (1) proposed 
that plumage coloration could be impor- 
tant to thermal regulation in birds, since 
color should influence the absorptivity of 
solar radiation. Several investigators (2, 
3) have conducted metabolic studies in 
the laboratory to show that birds when 
below thermal neutrality can use solar 
radiation to allieviate thermal stress. 
Monteith (4) pointed out that "reflec- 
tivity is an important discriminant in the 
heat balance of animals but the relation- 
ship between coat color and radiative 
heat load is complex." There is still a 
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question as to whether dark or light plu- 
mage is more effective in the utilization 
of direct solar radiation. Several studies 
(2, 5-7) have shown dark coloration to be 
more effective in the use of solar radia- 
tion, while others (8) have shown light 
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that at low wind speeds black plumages 
acquire a greater radiative heat load than 
do white plumages, but the heat loads of 
black and white plumages rapidly con- 

question as to whether dark or light plu- 
mage is more effective in the utilization 
of direct solar radiation. Several studies 
(2, 5-7) have shown dark coloration to be 
more effective in the use of solar radia- 
tion, while others (8) have shown light 
coloration to be more effective in radia- 
tive heat gain. Further, convective cool- 
ing (9) differentially affects the radiative 
heating of dark and light plumages, so 
that at low wind speeds black plumages 
acquire a greater radiative heat load than 
do white plumages, but the heat loads of 
black and white plumages rapidly con- 

References and Notes 

1. T. W. Berger, T. A. Milner, G. W. Swanson, G. 
S. Lynch, R. F. Thompson, Soc. Neurosci. 
Abstr. 5, 270 (1979). 

2. M. Gabriel, J. D. Miller, S. E. Saltwick, 
Physiol. Psychol. 4, 124 (1976); J. Comp. 
Physiol. Psychol. 91, 423 (1977). 

3. W. J. Brogden and E. Culler, Science 83, 269 
(1936). 

4. The criterion required that the percentage of 
CS+ trials in which locomotory response oc- 
curred exceed the percentage of CS- trials with 
locomotion by at least 60, in two consecutive 
sessions. 

5. G. A. Kimble, Hilgard and Marquis' Condi- 
tioning and Learning (Appleton-Century, New 
York, 1961), pp. 44-76. 

6. The FS was the first half-session in which the 
percentage of conditioned responses to the CS+ 
exceeded the percentage to the CS- by 25 or 
more. This value approximates the minimum re- 
quired to produce a significant X2 (P = .05) for a 
difference between correlated proportions [H. 
M. Walker and J. Lev, Statistical Inference 
(Holt, New York, 1953), p. 101]. 

7. K. Foster, E. Orona, M. Gabriel, R. W. Lam- 
bert, in preparation; M. Gabriel, E. Orona, K. 
Foster, R. W. Lambert, in preparation. 

8. M. Rose, J. Psychol. Neurol. 43, 353 (1933). 
9. S. W. Ranson and S. L. Clark, The Anatomy of 

the Nervous System (Saunders, Philadelphia, 
ed. 10, 1959). 

10. Acquired neuronal discrimination was judged to 
be present in a given training session if two or 
more of five consecutive scores obtained from 
the CS+ histogram exceeded their respective 
CS- scores by a minimum of three units. This 
criterion had to be met after the corresponding 
score difference from preliminary training was 
subtracted from the difference in training. The 
five scores were those for the second through 
the sixth periods of 100 msec after CS onset. 

11. B. J. Winer, Statistical Principles in Experimen- 
tal Design (McGraw-Hill, New York, 1962), p. 
210. 

12. R. A. McCleary, Prog. Physiol. Psychol. 1, 210 

References and Notes 

1. T. W. Berger, T. A. Milner, G. W. Swanson, G. 
S. Lynch, R. F. Thompson, Soc. Neurosci. 
Abstr. 5, 270 (1979). 

2. M. Gabriel, J. D. Miller, S. E. Saltwick, 
Physiol. Psychol. 4, 124 (1976); J. Comp. 
Physiol. Psychol. 91, 423 (1977). 

3. W. J. Brogden and E. Culler, Science 83, 269 
(1936). 

4. The criterion required that the percentage of 
CS+ trials in which locomotory response oc- 
curred exceed the percentage of CS- trials with 
locomotion by at least 60, in two consecutive 
sessions. 

5. G. A. Kimble, Hilgard and Marquis' Condi- 
tioning and Learning (Appleton-Century, New 
York, 1961), pp. 44-76. 

6. The FS was the first half-session in which the 
percentage of conditioned responses to the CS+ 
exceeded the percentage to the CS- by 25 or 
more. This value approximates the minimum re- 
quired to produce a significant X2 (P = .05) for a 
difference between correlated proportions [H. 
M. Walker and J. Lev, Statistical Inference 
(Holt, New York, 1953), p. 101]. 

7. K. Foster, E. Orona, M. Gabriel, R. W. Lam- 
bert, in preparation; M. Gabriel, E. Orona, K. 
Foster, R. W. Lambert, in preparation. 

8. M. Rose, J. Psychol. Neurol. 43, 353 (1933). 
9. S. W. Ranson and S. L. Clark, The Anatomy of 

the Nervous System (Saunders, Philadelphia, 
ed. 10, 1959). 

10. Acquired neuronal discrimination was judged to 
be present in a given training session if two or 
more of five consecutive scores obtained from 
the CS+ histogram exceeded their respective 
CS- scores by a minimum of three units. This 
criterion had to be met after the corresponding 
score difference from preliminary training was 
subtracted from the difference in training. The 
five scores were those for the second through 
the sixth periods of 100 msec after CS onset. 

11. B. J. Winer, Statistical Principles in Experimen- 
tal Design (McGraw-Hill, New York, 1962), p. 
210. 

12. R. A. McCleary, Prog. Physiol. Psychol. 1, 210 

Table 1. Heat flow through feathers as a function of color, angle, and air temperature; G, gray; 
W, white. 

(Ca Color W m-2 Tskin Tr Tsurface N 
(OC) (OC) (Oc)* (oC) 

90? angle 
27.0 G 119.1 + 10 40.0 37.3 69.7 3 
27.0 W 61.2 39.5 37.6 62 2 
20.0 G 102.6 + 11 40.2 36.7 69.5 4 
20.0 W 46.0 + 10 38.8 37.0 57.2 4 
20.0t G 54.6 39.5 36.5 67 2 
20.0t W 14.5 36.7 36.5 48.5 2 
10.0 G 71.0 + 5 38.5 36.6 62 3 
10.0 W 35.5 38.2 36.5 49.5 2 

135? angle 
27.3 G 50.6 + 6 38.4 37.0 52.5 3 
27.0 W 32.9 38.1 37.1 43.9 3 
20.0 G 33.5 + 4 38.1 36.8 48.0 3 
20.0 W 21.0 + 7 38.1 37.1 41.0 3 
20.0t G 25.6 37.7 37.0 45.0 2 
20.Ot W 9.9 36.5 36.5 36.5 2 
10.0 G 10.5 36.9 36.3 44.0 2 
10.2 W 7.2 ? 1 36.2 35.5 27.0 3 

160? angle 
27.9 G 21.0 + 9 37.4 36.9 43.7 4 
27.0 W 17.8 + 5 37.1 36.8 39.5 4 
20.0 G 2.0 + 1 36.8 37.0 36.5 3 
20.0 W 4.0 + 5 36.6 36.8 35.7 4 
20.0t G 0 35.0 37.0 35.0 2 
20.0t W 0 36.0 37.0 29.5 2 
10.0 G 0 35.0 36.7 32.0 2 
10.0 W 0 36.4 36.5 32.0 3 

*Radiation passed through 1 cm of water. tTemperature of reservoir. 
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