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stereopsis. 

It is generally assumed that a stereo- 
scopically presented object will appear 
fused and single if its binocular disparity 
falls within Panum's fusional area (1). 
When the disparity exceeds this limit, 
the object will appear double. An ob- 
ject's disparity may be measured relative 
to the vergence angle of the eyes or rela- 
tive to another object in the visual field, 
such as a fixation point. According to the 
traditional view, the magnitude of this 
disparity (or disparity difference) is the 
critical parameter for fusion. 

We find, however, that the disparity 
gradient rather than the disparity magni- 
tude is the limiting factor for fusion when 
two or more objects occur near one an- 
other in the visual field. The disparity 
gradient is defined between nearby ob- 
jects as the difference in their disparities 
divided by their separation in visual 
angle. Fusion of at least one object fails 
when this gradient exceeds a critical val- 
ue (approximately 1). 

To illustrate an implication of the dis- 
parity gradient constraint, consider two 
objects that are moved toward one an- 
other in the visual field, while the dis- 
tances of the objects from an observer 
are held constant. The disparity gradient 
between the objects will increase in in- 
verse proportion to object separation 
and must eventually exceed the gradient 
limit for fusion. Thus, each object may 
appear single when the two are widely 
separated, but when their angular sepa- 
ration becomes sufficiently small, single- 
ness of one or both will necessarily give 
way to diplopia. This is true even for ob- 
jects with very small disparities well 
within Panum's fusional limit. 

The minimal stereogram in which the 
disparity gradient may influence fusion is 
composed of just two dots. The impor- 
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tant geometric parameters of the stereo- 
gram are the dot separations, Re, Rr, and 
orientations Oe, Or, in the left and right 
half-images (Fig. 1A). The binocular dot 
separation, Rb, and orientation, Ob, are 
defined by the midpoints between the 
half-images of each dot in the binocular 
view (Fig. lB). 

The binocular disparity difference of 
the stereogram is defined as the dif- 
ference between the individual dot dis- 
parities. 

db = dl - d2 = Rr cos Or - Re cos Oe 

The disparity gradient for these dots may 
be defined as their binocular disparity 
difference divided by the binocular dot 
separation, db/Rb It should be noted that 
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Fig. 1. Geometry of a two-dot stereogram. (A) 
The half images shown to each eye and (B) the 
physical pattern after binocular combination. 
There is no vertical disparity, so Re sin 0e 
= Rr sin Or. Dots seen by the left eye are shown 
as filled symbols and dots seen by the right 
eye as open symbols. In the stereograms 
these dots are identical. 
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Rb, Ob, db, and the disparity gradient de- 
pend only on stereogram geometry, and 
are independent of ocular vergence. 

When the stereogram is binocularly 
combined (Fig. IB), the upper and lower 
dots may appear at different depths, and 
their half images may appear fused 
(single) or diplopic (double). Diplopia oc- 
curs when disparities d1 and d2 are large. 
We find that it also occurs for small d, 
and d2 when Rb is small. 

A new type of stereogram was devised 
for this study, in which the same periodic 
image is presented to both eyes (Fig. 
2B), and depth results from the "wallpa- 
per" effect. Each "wallpaper stereo- 
gram" contains many dot pairs of the 
type shown in Fig. 1 arranged in a regu- 
lar array. All pairs have the same dis- 
parity, db, and orientation, Ob. In addi- 
tion, all pairs within a row have the same 
separation, Rb. However, Rb is increased 
from row to row as one moves up the 
stereogram. Thus the disparity gradient, 
dJRb, changes systematically over the 
stereogram. 

For an initial experiment, separate 
stereograms were constructed for each 
of four angles, Ob, and four disparities, 
db. A range of Rb was chosen for each 
stereogram so that fusion was obtained 
near the top and diplopia near the bot- 
tom. Stereograms were drawn on a hard- 
copy unit (Tektronix 4631) and measured 
15 by 20 cm each. 

Three subjects viewed the stereo- 
grams from 50 cm and reported the num- 
ber of the row that appeared to fall at the 
boundary between regions of fusion and 
diplopia, the row at which fusion and di- 
plopia seemed equally likely to occur. 

In a second experiment, the viewing 
distance was varied in order to extend 
the range of disparities studied. A set of 
15 stereograms differing in disparity but 
not in orientation (Ob = 90) were viewed 
from three distances (25, 50, and 100 
cm). 

Fusion was not always obtained above 
the reported transition row, and scrutiny 
of dots often caused diplopia. Diplopia 
always occurred below the reported 
transition row. 

The dot separation, Rb, was deter- 
mined for each of the rows reported by 
subjects in three observations of a 
stereogram. These were averaged to ob- 
tain a single estimate of the critical dot 
separation, Rb, which marked the 
boundary between fusion and diplopia. 
Transition values for one observer are 
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rate curves have been drawn in Fig. 3A 
for each angle Ob and in Fig. 3B for each 
viewing distance. 
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lute disparity limit for binocular fusion. It is now found that nearby objects modify 
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dient constraint. For example, the dis- 
parity gradient constraint implies that a 
single image component in one eye can- 
not be fused at one moment with more 
than one component in the other eye. 
Such "multiple fusion" has been sug- 
gested as one explanation of depth per- 
ceived in Panum's limiting case (5). This 
stereogram may be constructed by pre- 
senting a single dot to one eye and a pair 
of dots to the other. In the nomenclature 
of Fig. 1, Or = Oe = Re = 0. Thus, 
db= Rr, Rb = R12, and the gradient db 
Rb = 2 is roughly twice as large as the 
limit we observed, so multiple fusion 
cannot occur. 

The disparity gradient limit for fusion 
also implies that fusion space cannot 
"fold back" on itself when two or more 
objects occur at the same vertical level in 
the visual field. That is, fusion is not pos- 
sible if the left-to-right order of the ob- 
ject images is reversed in one eye with 
respect to the other. Simple geometry 
will confirm that in this case, d/Rb > 2, 
which is outside the bounds for fusion. 

We have found that fusion is never ob- 
tained when the disparity gradient ex- 
ceeds a critical value of approximately 1? 
of disparity per degree of dot separation. 
Thus, diplopia occurs even for dots with 
disparities well within the classical Pan- 
um's fusional area whenever the gradient 
limit is exceeded. It is this failure of fu- 
sion under normally favorable conditions 
that most clearly demonstrates the criti- 
cal role of object interactions in fusion. 
It seems that nearby objects "warp" the 
fusional space, creating forbidden zones 
in which changes in disparity are too 
steep for fusion. 

PETER BURT*, BELA JULESZ 
Bell Laboratories, 
Murray Hill, New Jersey 07974 
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Telemetered Electromyography of Forelimb Muscle Chains 

in Gibbons (Hylobates lar) 

Abstract. Electromyographic studies of brachiation in the gibbon controvert de- 
ductions, based on dissection, about the purportedfunctions of muscle chains in the 
hylobatid forelimb. Neither force conduction distally along the components of the 
chains nor simultaneity of muscular contraction occurs in brachiation. Rather, the 
unique structure of the forelimb is probably the result of evolved changes in the short 
head of biceps brachii to enhance its role as a forearm flexor. 
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The acrobatic arm-swinging locomo- 
tion (brachiation) and highly specialized 
forelimb morphology of the lesser apes 
Hylobates (gibbon) and Symphalangus 
(siamang) have fascinated and puzzled 
natural historians, comparative anato- 
mists, and anthropologists for more than 
a century (1, 2). Brachiation dominates 
the locomotor repertoire of all lesser 
apes (3); and of all primates only these 
regularly engage in ricocheting brachia- 
tion (2-4), wherein the forelimbs act as 
propellant organs to hurl the animals 
across gaps in the forest canopy. Among 
the most prominent structural modifica- 
tions in hylobatids are two sets of mul- 
tiple-joint muscles that appear to be 
fused into two interacting chains: a ven- 
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fused into two interacting chains: a ven- 
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tral chain (pectoralis major to short head 
of biceps brachii to flexor digitorum su- 
perficialis) and a dorsal chain (latissimus 
dorsi to dorsoepitrochlearis to short 
head of biceps brachii to flexor digitorum 
superficialis). Deductive speculations 
about the function of these chains are 
based on dissection; they can be traced 
as far back as Sir Arthur Keith in the late 
19th century (5), and have continued 
unabated to the present (6-9). 

The ventral chain is purported to con- 
duct the flexor force of the pectoralis ma- 
jor distally across shoulder, elbow, and 
wrist joints so that active or passive ten- 
sion in this muscle results in automatic 
flexion of the forearm and fingers with- 
out requiring activity in the distal mem- 
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Fig. 1. Muscular activity during standard (a) and ricocheting (b) brachiation in Hylobates lar. 
Muscular components of the chains include pectoralis major pars clavicularis (PMCL), pecto- 
ralis major pars sternocostalis (PMSC), short head of biceps brachii (BBSH), flexor digitorum 
superficialis (FLDS); latissimus dorsi (LATD), and dorsoepitrochlearis (DOEP). Contact and 
release of the dowels are indicated by C and R, respectively; the dashed lines denote the middle 
of each phase of brachiation. The first number in each box refers to the number of individuals; 
the second, to the number of phase cycles counted (10). Blackened regions indicate highly 
consistent activity occurring at least 67 percent of the time in both animals; enclosed white 
regions, frequent but not consistent activity occurring at least 67 percent of the time in one 
subject or 33 percent of the time in both subjects. The height of each blackened or enclosed 
region indicates the relative amplitude of activity. Activity in a proximal member of the ventral 
chain (pectoralis major pars sternocostalis) was recorded at the moment of release--as the 
fingers were extending. Activity observed in proximal elements of the chains during the remain- 
der of the swing phase was not associated with digital flexion. The activity of the flexor digi- 
torum superficialis in the support phase (to establish a stable grip) and of the biceps brachii in the 
swing phase (to produce elbow flexion and thereby reduce the moment of inertia) demonstrates 
that, for these purposes, the animal does not rely on force conduction from more proximal 
muscles. 
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