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The results of peripheral nerve repair 
in humans are often disappointing. Fine 
coordination is impaired, and individual 
muscles no longer act independently of 
one another. Reinnervation of muscle by 
inappropriate motoneurons may be a 
cause of poor postoperative function (I), 
but has not been clearly demonstrated. 
We have shown that after repair of the 
rat sciatic nerve, the peroneal muscles 
are reinnervated by appropriate mo- 
toneurons as well as by many that pre- 
viously served their antagonists. We 
have also found that few motoneurons in 
the gamma size class regain peripheral 
connections. There are thus anatomical 
defects in both the specificity of muscle 
reinnervation and the extent of gamma 
control after peripheral nerve repair; 
these defects may result in the deteriora- 
tion of function commonly experienced. 

Experiments were performed on five 
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250-g female albino rats. In two normal 
animals horseradish peroxidase (HRP) 
was injected into the peroneal or the tibi- 
al muscle compartments to determine 
the relative locations of their motoneu- 
ron pools. In three additional rats the 
right sciatic nerve was severed in mid- 
thigh, and epineurial repair was per- 
formed with 10-0 nylon sutures under 
magnification (x3 to x8). After 3 
months, HRP was injected into both per- 
oneal compartments of these animals. 
Each muscle group was injected with 20 
,tl of 20 percent HRP (Sigma VI) in 5-,l 
portions under anesthesia (Chloropent, 3 
ml per kilogram of body weight). Nerves 
supplying adjacent muscles were sev- 
ered through a more proximal incision to 
limit the central transport of HRP to the 
chosen pathway (2). After 48 hours the 
animals were reanesthetized and per- 
fused with fixative according to proce- 
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dure II of Rosene and Mesulam (3). The 
lumbosacral cords were dissected out, 
cut in 40-tum cross sections, and reacted 
with H202 and tetramethyl benzidine (4). 
The sections were serially mounted, 
counterstained with neutral red, and ex- 
amined to determine the location, num- 
ber, and size of labeled cells present in 
each section. Cell profiles that appeared 
in two adjacent sections were counted 
only once. Neuronal diameters were es- 
timated by the method of Burke et al. 
(2). 

In normal rats, injecting the peroneal 
or tibial muscle compartments of the 
lower leg resulted in the labeling of dis- 
crete pools of motoneurons in the ante- 
rior horn of the spinal cord. Others have 
demonstrated similar compartmentali- 
zation (2, 5). The location of the pero- 
neal motoneuron pool was defined in 
the coronal plane at different cord 
levels. Neurons labeled by peroneal 
muscle injection after nerve repair were 
scored as "in" or "out" of the normal 
peroneal pool location by comparing 
their position with that of the normal 
pool on the opposite, control side of the 
same animal. 

The six control peroneal pools con- 
tained an average of 395 cells (range, 368 
to 434) (6). In one animal, bilateral per- 
oneal compartment injection labeled 368 
cells on the right and 424 on the left. 
There was thus a variation in pool size of 
13 percent from side to side and 15 per- 
cent overall. In normal peroneal pools, 
most cells were concentrated in the 
fourth lumbar (L4) segment, with an 
abrupt proximal termination and gradual 
attenuation throughout L, (Fig. 1). In 
one animal, the normal tibial pool con- 
tained 866 cells extending from L4 to 
L6 and was most prominent in its caudal 
extreme. 

The three postoperative peroneal 
pools contained an average of 273 cells 
(range, 245 to 291). The mean post- 
operative pool was thus 69 percent the 
size of its normal counterpart, a varia- 
tion far greater than the 15 percent varia- 
bility in normal pool size. The anatomi- 
cal distribution of motoneurons inner- 
vating the peroneal muscles was also 
changed postoperatively. The peak con- 
centration of labeled cells, which nor- 
mally occurred at the L4 level, shifted to 
the L5 and even L6 levels (Fig. 1). In ad- 
dition, 29 to 47 percent of the cells la- 
beled by peroneal muscle injection were 
within the area normally occupied on co- 
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Alteration in Connections Between Muscle and 

Anterior Horn Motoneurons After Peripheral Nerve Repair 
Abstract. The connections between the spinal cord and lower leg muscles of the 

rat are significantly altered by repair of the intervening sciatic nerve. Muscles sup- 
plied by the peroneal branch of the sciatic are innervated byfewer motoneurons after 
sciatic repair. Many of these neurons originally innervated the peroneal muscles, 
and others formerly served the antagonistic tibial muscles. Perikarya in the size 
range of alpha motoneurons regained peripheral connections with greater frequen- 
cy than those in the gamma range. There are thus postoperative defects in the extent 
and specificity of alpha reinnervation as well as in the degree of gamma control. 
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tion of labeled cells was altered after 
nerve repair. Normal peroneal pools 
contained two cell populations, one with 
large perikarya of diameters 30 to 50 gtm 
and a second with smaller perikarya, 
most of which were 18 to 21 ,tm in diam- 
eter. In normal pools, 16 to 22 percent of 
labeled cells were within the smaller size 
class, whereas only 2 to 3 percent of cells 
labeled postoperatively were this small. 

Peripheral nerve repair thus alters the 
relationship between muscles and their 
innervating neurons. Many anterior horn 
motoneurons do not reestablish periph- 
eral connections. The anatomical distri- 
bution of those whose axons do regener- 
ate and subsequently innervate the per- 
oneal muscles is strikingly different from 
that in the normal animal. Peak concen- 
trations of peroneal motoneurons nor- 
mally occur at the L4 level, but there was 
a caudal shift to the L5 and even L6 root 
levels after nerve repair. In fact, 29 to 47 
percent of cells labeled postoperatively 
were outside the limits of the normal per- 
oneal pool (Fig. 2) and lay in areas pre- 

viously occupied by tibial motoneurons. 
Perikarya that formerly innervated the 
tibial compartment thus reinnervated per- 
oneal muscles. Such misdirected regen- 
eration may result from imperfect align- 
ment of proximal and distal axons at the 
nerve juncture, so that regenerating tibial 
axons enter peroneal axon sheaths in 
the distal stump. The use of higher mag- 
nification and the alignment of individual 
fascicles within the nerve (perineurial re- 
pair) may result in the formation of more 
appropriate connections than are seen 
here (7). 

The finding that many tibial axons 
reinnervate the rat peroneal muscles is 
consistent with earlier research that 
showed an absence of neurotropism in 
the peripheral reinnervation of adult 
mammals. Weiss and Hoag (8) demon- 
strated that motor axons, regardless of 
their previous connections, behaved as 
equals when reinnervating muscle. Their 
observations were confirmed by Bern- 
stein and Guth (9) in a different experi- 
mental model. Miledi and Stefani (10) 

have shown that reinnervation of fast 
and slow twitch muscle fibers is equally 
nonspecific, and Kimura et al. (11) have 
clinically demonstrated aberrant regen- 
eration of the injured facial nerve. In- 

appropriate reinnervation may even oc- 
cur in newborn rats after injury to the 
brachial plexus (12). In contrast, the cur- 
rent evidence for specificity of motor re- 
generation has been provided by experi- 
ments on lower vertebrates (13) and 

probably does not apply to mammalian 
systems. 

Our results further suggest that few 
gamma motoneurons regenerate post- 
operatively. Burke et al. found a bimodal 
distribution of the diameters of anterior 
horn cells (range, 18 to 78 um) after HRP 

injection of the cat gastrocnemius and 
soleus muscles (2). Of these cells, 25 to 
30 percent formed a well-defined group 
with mean diameter 25 to 30 ,um and 
were thought to be gamma motoneurons. 
We have found a similar bimodal size 
distribution of HRP-labeled rat moto- 
neurons, but within the diameter range 
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Fig. 1 (left). Longitudinal distribution of labeled cells along the rostro-caudal extent of the spinal cord. Each bar represents the labeled cells 
contained in five consecutive 40-am sections. Caudal is to the left, rostral to the right, and root levels are only approximate because of lateral 
asymmetry. (A) Bilateral peroneal muscle injections in a control animal. (E) Tibial and peroneal muscle injection on opposite sides of the 
same control animal. (The gap at 6 mm represents sections lost in processing.) (B to D) The varying longitudinal distribution of neurons labeled 
by peroneal muscle injection after sciatic-nerve repair. In these animals the normal peroneal pool is labeled on the unoperated contralateral side 
(18). Fig. 2 (right). Individual representative spinal cord sections in the coronal plane from two animals showing the relative locations 
of normal tibial and peroneal pools (right) and the location of cells labeled by postoperative peroneal muscle injection (left). Closed triangles 
represent labeled motoneurons, and open triangles represent the remaining unlabeled motoneurons. The margins of the gray matter, including 
ventral and dorsal horns, are indicated by thin lines, and the margins of the cord itself by thick lines. Cells labeled by peroneal muscle injection 
after sciatic repair occupied the normal domains of both peroneal and tibial neurons, though they did not extend to the Si level in this case. 
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of 10 to 50 /im. Sixteen to 22 percent 
of these cells formed the presumed gam- 
ma group, with mean diameter 19 ,tm. 
Postoperatively, however, only 2 to 
3 percent of labeled cells were this 
small. This discrepancy is unlikely to 
result from posttraumatic swelling of the 
anterior horn cell, since the disappear- 
ance of small cells was not accompanied 
by increase in maximum cell size (14). 
Brown and Butler (15) and Thulin (16) 
have provided electrophysiologic evi- 
dence for the return of gamma function 
in the cat after the nerve to the tenis- 
simus muscle was crushed or a 1-cm seg- 
ment of posterior tibial nerve was re- 
sected. However, Takano was unable 
to demonstrate gamma reinnervation of 
muscle spindles 6 months after local 
freezing of the cat sciatic nerve (17). In 
Brown and Butler's and in Thulin's ex- 
periments, nerve was disrupted near its 
termination; in Takano's and ours, how- 
ever, the injury was midway between 
spinal cord and muscle. The failure of 
gamma reinnervation after sciatic injury 
may thus be attributed to either (i) the 
inability of gamma motoneurons to re- 
generate over relatively long distances or 
(ii) the allowance of insufficient time for 
regeneration to occur. 

The importance of gamma regenera- 
tion has not been established. Takano 
demonstrated a return of normal gait 
in cats after freezing the sciatic nerve, 
even though gamma reinnervation could 
not be demonstrated (17). Conversely, 
Thulin showed that, after posterior tibi- 
al nerve injury, push-off in gait did not 
occur with adequate gastroc-soleus 
strength until gamma reinnervation was 
reestablished (16). More research is 
needed to define the patterns and func- 
tional consequences of gamma reinner- 
vation after various types of injury. 

We have demonstrated alterations in 
the quantity, position, and size distribu- 
tion of the anterior horn cells serving a 
muscle group after repair of the in- 
nervating multifascicular nerve. Mark 
has summarized the deficits following 
nerve severance and repair in higher ver- 
tebrates as loss of coordinated move- 
ment with capacity for only graded mass 
contraction (1). He suggests that undi- 
rected growth of axon sprouts has led 
many axons to the wrong muscle, so that 
a pool of motoneurons that previously 
served one muscle controls motor units 
scattered among several. Demands for 
contraction of the original muscle result 
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rected growth of axon sprouts has led 
many axons to the wrong muscle, so that 
a pool of motoneurons that previously 
served one muscle controls motor units 
scattered among several. Demands for 
contraction of the original muscle result 
in weak contraction of the whole group. 
We have demonstrated the anatomical 
changes Mark hypothesized and pro- 
vided evidence for alterations in the 
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gamma control mechanism. However, 
the functional consequences of these 
changes will depend on the quality of 
sensory regeneration and the degree of 
central adaptation to anterior horn dis- 
organization. Combined anatomic and 
physiologic investigation will be neces- 
sary to assess the contribution of each to 
the end results of nerve repair. 

THOMAS M. BRUSHART 
M.-MARSEL MESULAM* 

Neurology Unit, Beth Israel Hospital, 
Boston, Massachusetts 02215 
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extends to the molecular and ionic levels. 

The urinary bladder endosurface faces 
a relatively hostile environment, one that 
contains high levels of calcium, potential 
carcinogens, and at times pathogenic 
microorganisms. Our previous studies 
showed that the transitional cell epithe- 
lium produces and maintains at its sur- 
face a glycosaminoglycan whose pres- 
ence may explain why the bladder sur- 
face is so resistant to these insults (1-9). 
The presence of glycosaminoglycan is 
associated with a marked impairment of 
the ability of bacteria to adhere to the, 
surface. Furthermore, it is possible to re- 
move the natural glycosaminoglycan and 
reproduce its antiadherence effect in 
vivo with several synthetic glycosami- 
noglycans (3, 4, 9). These findings sug- 
gested a new mode of antibacterial thera- 
py in which a natural immune mecha- 
nism is augmented. We conducted the 
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experiments reported here in order to de- 
termine whether the antiadherence effect 
of natural and synthetic glycosaminogly- 
cans extends to the molecular and ionic 
levels, a phenomenon that would open 
the possibility of many new therapeutic 
uses for the synthetic compounds. 

The assay for measuring bacterial ad- 
herence to the bladder mucosa of the 
rabbit in vivo was described in detail by 
Parsons and Mulholland (5). We used the 
same assay in the present studies, except 
that 45Ca or 14C-labeled protein was sub- 
stituted for bacteria. 

Male New Zealand White rabbits (2 to 
3 kg) were given, via penile catheter, 
45Ca (0.1 /Ci; New England Nuclear) or 
14C-labeled protein (0.1 .tCi; Amer- 
sham), each suspended in 0.5 ml'of phys- 
iological saline solution (PSS). Group 1 
(control) rabbits, whose bladder mucin 
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Bladder-Surface Glycosaminoglycans: 
An Efficient Mechanism of Environmental Adaptation 

Abstract. The transitional epithelium of the urinary bladder secretes and binds to 
its surface a glycosaminoglycan that inhibits the adherence of bacteria. Synthetic 
sulfonated glycosaminoglycans instilled intraluminally into bladders whose natural 
mucin layer has been removed are as effective as the natural mucin in preventing 
bacterial adherence. It also appears that adherence of calcium and protein is re- 
duced in the presence of both the natural mucin layer and the synthetic sulfonated 
glycosaminoglycan sodium pentosanpolysulfate, suggesting that the antiadherence 
activity of both natural and synthetic surface glycosaminoglycans in the bladder 
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