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similar pump sacs remained generally free of mineral deposits for up to 150 

in calves treated with the anticoagulant warfarin-sodium. These results impli- 
X vitamin K-dependent process in calcium phosphate deposition on elastomeric 
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tion for prolonged periods (1). Although 
the ultimate goal of implantable blood 
pump programs is the development of an 
artificial heart, a highly desirable inter- 
mediate goal is the development of an 
implantable, long-term, left ventricular 
assist pump. Initial problems of throm- 
boembolism and device breakage have 
been reduced to tolerable levels. Gradual 
improvements in pump design, pump 
fabrication, and operative techniques 
have enabled investigators to provide 
continuous left ventricular support in 
calves for periods exceeding 3 months 
(2-4). Moreover, three groups found that 
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Table 1. Sac calcification in calves not treated 
with warfarin-sodium. 

Portion of 
Period of flexing side 

Calf continuous of sac covered 
No.* pumping by gross 

(days) calcification 
(%)t 

176R 115 68.6 
176L 115 59.3 
108R 159 45.4 
108L 159 57.1 
141 166 100 

*R and L refer to right or left ventricle of an artificial 
heart. Calf No. 141 had an implanted left ventricular 
assist pump. tAs determined by planimetry. 
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calves could survive more than 5 months 
after heart replacement with two pneu- 
matically powered implanted blood 
pumps (5). 

As longer-term animal studies have 
become possible, dystrophic calcifica- 
tion has been observed on the blood-con- 
tacting surfaces of the pumps removed 
from animals- at autopsy. Calcification 
has been observed on pump linings fabri- 
cated of segmented polyether-type poly- 
urethane, segmented polyurethane-poly- 
dimethyl siloxane copolymer, Dacron 
flock-lined polyurethane, and glutaralde- 
hyde-treated, gelatin-coated synthetic 
rubber (2, 6). This calcification has 
caused stiffening, flexion failure, and 
perforation of the pump linings. Al- 
though this degree of calcification may 
be unique to the growing calf, it is now 
limiting the duration of studies in these 
animals. 

In 1976, our group began to use an im- 
plantable, pneumatically powered blood 
pump consisting of a segmented poly- 
urethane sac contained within a rigid 
plastic case (4, 7). The pump has been 
used as a left ventricular assist device 
or, with two such pumps, as an artificial 
heart, in a series of male Holstein-Frie- 
sian calves weighing 90 to 110 kg. To min- 
imize the incidence of thromboembo- 
lism, we administered the anticoagulant 
warfarin-sodium and the platelet pro- 
tective agents aspirin (20 mg/kg-day) and 
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Fig. 1. Representative photographs of the blood pump sac in a calf not treated with warfarin-sodium (calf No. 176R). (a) A section of the outlet 
neck. A dense calcium phosphate deposit was present on the moving portion of the sac, whereas the stationary portion was free of grossly visible 
deposits. A rather well-delineated edge, which marks the boundary between the moving and stationary sac walls, separates the two zones. (b) A 
magnified view of the calcific deposit. The calcium phosphate crystals were firmly adherent to a proteinaceous coating on the underlying seg- 
mented polyurethane. 

dipyridamole (3 mg/kg-day). The dose of 
warfarin-sodium (5 to 10 mg/day) was ad- 
justed to maintain a prothrombin time of 
25 to 30 seconds (8). Six calves (in which 
were implanted a total of seven blood 
pumps, that is, five calves having assist 
pumps and one calf having an artificial 
heart) lived over 90 days with one of 
them surviving 150 days. From the mean 
survival time of the calves we calculated 
that the blood pumps worked effectively 
for 115 + 22 days (mean + standard de- 
viation, N = 7) (9). When we examined 
the animals at autopsy, we found that the 
pump sac surfaces were substantially 
free of cells and gross deposits of either 
mineral or organic matter. However, the 
pump sacs from calf No. 433 (survival 
time 100 days) did show thin calcium 
phosphate deposits along the line of 
maximum flexion, and these deposits 
covered < 1 percent of the area of the 
flexing side of the sac. 

Having proved that use of this type of 
pump resulted in relatively few throm- 
boembolic complications, we implanted 
pumps in another series of'calves with- 
out administering warfarin-sodium (in 
order to eliminate risks of bleeding asso- 
ciated with anticoagulation); but we con- 
tinued to use the platelet protective 
drugs. We used three calves (in which 
were implanted five blood pumps, that 
is, one calf having an assist pump and 
two calves having artificial hearts). From 
the mean survival time of the calves 
we calculated that the blood pumps 
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worked effectively 'for 142 + 25 days 
(mean + standard deviation, N = 5). 
The period of continuous pumping was 
not significantly different from that of the 
warfarin-sodium treated calves (P < .20, 
by a nonparametric Student's t-test). 
However, the appearance of the sacs at 
autopsy was considerably different from 
what had been observed previously. White 
microcrystalline deposits generally limit- 
ed to the intracavitary portion of the 
flexing side were found in all five pump 
sacs, with secondary entrapment of 
some red blood cells in the most en- 
crusted sacs (Fig. 1). The firmly adherent 
deposit was thickest at the periphery of 
the moving side of the sac (line of maxi- 
mum flexion). The flexing zone deposits 
varied from thicknesses exceeding 3.0 
mm to nonmeasurable amounts (Table 
1). Subsequent scanning electron micro- 
scopic and energy-dispersive x-ray ex- 
aminations of the interior sac surfaces 
showed abundant, calcium phosphate- 
rich deposits on the entire blood-con- 
tacting surface, the largest amounts 
being located along the line of maximum 
flexion. Data obtained by x-ray dif- 
fraction indicate that microcrystalline 
hydroxyapatite or chlorapatite is the pre- 
dominant mineral form. 

The calcification on the segmented 
polyurethane sac is the result of an inter- 
action between the prosthetic pump and 
the biological system. Factors affecting 
the pump may include flexing diaphragm 
stresses, local temperature increases, 

and absorption of blood constituents into 
the polymer. Our study suggests that al- 
teration in the biological environment 
can effect the calcification process. 
There is increasing evidence implicating 
vitamin K in the biological mineral- 
ization process. Warfarin-sodium admin- 
istration during pregnancy has a definite 
effect on skeletal calcification in the fetus 
(fetal warfarin syndrome), although the 
mechanism is not clearly understood 
(10). Recently, a vitamin K-dependent, 
y-carboxyglutamic acid (Gla)-containing 
protein was identified that has an affinity 
for insoluble calcium salts and partici- 
pates in the regulation of calcium salt 
deposition in mineralized tissue (11). 
Gla-containing proteins have been 
shown to be present in natural bone and 
in pathological mineralization as seen in 
calcific atherosclerosis, renal calculi, 
and calcific aortic valves (12). The appar- 
ent inhibitory effects of warfarin-sodium 
on sac calcification reported herein sug- 
gests that such a vitamin K-dependent, 
protein carboxylation process may be 
implicated in the calcium phosphate dep- 
osition on elastomeric blood pump sacs. 
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The results of peripheral nerve repair 
in humans are often disappointing. Fine 
coordination is impaired, and individual 
muscles no longer act independently of 
one another. Reinnervation of muscle by 
inappropriate motoneurons may be a 
cause of poor postoperative function (I), 
but has not been clearly demonstrated. 
We have shown that after repair of the 
rat sciatic nerve, the peroneal muscles 
are reinnervated by appropriate mo- 
toneurons as well as by many that pre- 
viously served their antagonists. We 
have also found that few motoneurons in 
the gamma size class regain peripheral 
connections. There are thus anatomical 
defects in both the specificity of muscle 
reinnervation and the extent of gamma 
control after peripheral nerve repair; 
these defects may result in the deteriora- 
tion of function commonly experienced. 
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250-g female albino rats. In two normal 
animals horseradish peroxidase (HRP) 
was injected into the peroneal or the tibi- 
al muscle compartments to determine 
the relative locations of their motoneu- 
ron pools. In three additional rats the 
right sciatic nerve was severed in mid- 
thigh, and epineurial repair was per- 
formed with 10-0 nylon sutures under 
magnification (x3 to x8). After 3 
months, HRP was injected into both per- 
oneal compartments of these animals. 
Each muscle group was injected with 20 
,tl of 20 percent HRP (Sigma VI) in 5-,l 
portions under anesthesia (Chloropent, 3 
ml per kilogram of body weight). Nerves 
supplying adjacent muscles were sev- 
ered through a more proximal incision to 
limit the central transport of HRP to the 
chosen pathway (2). After 48 hours the 
animals were reanesthetized and per- 
fused with fixative according to proce- 
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dure II of Rosene and Mesulam (3). The 
lumbosacral cords were dissected out, 
cut in 40-tum cross sections, and reacted 
with H202 and tetramethyl benzidine (4). 
The sections were serially mounted, 
counterstained with neutral red, and ex- 
amined to determine the location, num- 
ber, and size of labeled cells present in 
each section. Cell profiles that appeared 
in two adjacent sections were counted 
only once. Neuronal diameters were es- 
timated by the method of Burke et al. 
(2). 

In normal rats, injecting the peroneal 
or tibial muscle compartments of the 
lower leg resulted in the labeling of dis- 
crete pools of motoneurons in the ante- 
rior horn of the spinal cord. Others have 
demonstrated similar compartmentali- 
zation (2, 5). The location of the pero- 
neal motoneuron pool was defined in 
the coronal plane at different cord 
levels. Neurons labeled by peroneal 
muscle injection after nerve repair were 
scored as "in" or "out" of the normal 
peroneal pool location by comparing 
their position with that of the normal 
pool on the opposite, control side of the 
same animal. 

The six control peroneal pools con- 
tained an average of 395 cells (range, 368 
to 434) (6). In one animal, bilateral per- 
oneal compartment injection labeled 368 
cells on the right and 424 on the left. 
There was thus a variation in pool size of 
13 percent from side to side and 15 per- 
cent overall. In normal peroneal pools, 
most cells were concentrated in the 
fourth lumbar (L4) segment, with an 
abrupt proximal termination and gradual 
attenuation throughout L, (Fig. 1). In 
one animal, the normal tibial pool con- 
tained 866 cells extending from L4 to 
L6 and was most prominent in its caudal 
extreme. 

The three postoperative peroneal 
pools contained an average of 273 cells 
(range, 245 to 291). The mean post- 
operative pool was thus 69 percent the 
size of its normal counterpart, a varia- 
tion far greater than the 15 percent varia- 
bility in normal pool size. The anatomi- 
cal distribution of motoneurons inner- 
vating the peroneal muscles was also 
changed postoperatively. The peak con- 
centration of labeled cells, which nor- 
mally occurred at the L4 level, shifted to 
the L5 and even L6 levels (Fig. 1). In ad- 
dition, 29 to 47 percent of the cells la- 
beled by peroneal muscle injection were 
within the area normally occupied on co- 
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Alteration in Connections Between Muscle and 

Anterior Horn Motoneurons After Peripheral Nerve Repair 
Abstract. The connections between the spinal cord and lower leg muscles of the 

rat are significantly altered by repair of the intervening sciatic nerve. Muscles sup- 
plied by the peroneal branch of the sciatic are innervated byfewer motoneurons after 
sciatic repair. Many of these neurons originally innervated the peroneal muscles, 
and others formerly served the antagonistic tibial muscles. Perikarya in the size 
range of alpha motoneurons regained peripheral connections with greater frequen- 
cy than those in the gamma range. There are thus postoperative defects in the extent 
and specificity of alpha reinnervation as well as in the degree of gamma control. 
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