
different directions of MAE must have 
been established within the visual sys- 
tem. Only one direction was experienced 
at a time, as determined by the particular 
conditions of testing. 

Taken together, our experiments show 
that the direction of the MAE can be 
synthesized from two or more com- 
ponents. This is a general finding inde- 
pendent of the specific patterns used to 
induce or to test the MAE. It is as if the 
motion-detecting cells of the brain pay 
no attention to the objects themselves, 
being concerned only with their direction 
of movement. 

We cannot specify at this time the 
brain centers for the conscious and un- 
conscious processing of motion informa- 
tion that our experiments have revealed. 
Present-day studies of single cortical 
cells have amply shown (10) that some of 
them are sharply tuned motion detec- 
tors. It remains, however, for elec- 
trophysiologists to identify cells or cen- 
ters in which their signals are pooled to 
mediate new directions of motion. 

On the psychophysical side, our find- 
ings are consistent with a recent report 
(11) that in the presence of a relatively 
strong MAE in one direction, a dot pat- 
tern of low contrast moving in another 
direction can seem to be deviated by as 
much as 10? in a direction toward that of 
the existing MAE. 

Finally, the subjective effects that we 
observed are consistent with those re- 

ported in other perceptual domains. In 
normal color vision, for example, red 
and green lights can be combined to pro- 
duce a yellow that appears as a new hue 
without any trace of its components (12). 
Similarly, a three-dimensional solid ob- 
ject can be made to appear in visual 
space by stereoscopic fusion of separate- 
ly meaningless patterns presented to the 
left and right eyes (13). Our motion after- 
effects may thus be added to a class of 
previously described instances in which 
the perception arises from a synthesis of 
unperceived components. 
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An "Inhibitory" Influence on Brainstem Population Responses 

Abstract. Forward masking was used to obtain measurements of physiological 
masking and two-tone unmasking from short-latency evoked potentials and psycho- 
physical responses in human subjects. The physiological results are in qualitative 
agreement with data on inhibitory phenomena in nonhuman auditory systems. The 
neural and behavioral data obtained thus far agree well. 

An "Inhibitory" Influence on Brainstem Population Responses 

Abstract. Forward masking was used to obtain measurements of physiological 
masking and two-tone unmasking from short-latency evoked potentials and psycho- 
physical responses in human subjects. The physiological results are in qualitative 
agreement with data on inhibitory phenomena in nonhuman auditory systems. The 
neural and behavioral data obtained thus far agree well. 

In vision, prominent edges often ap- 
pear bordering regions of discontinuity 
in wavelength, intensity, texture, or oth- 
er stimulus characteristics (1). Analo- 
gous "edge effects" occur in hearing at 

In vision, prominent edges often ap- 
pear bordering regions of discontinuity 
in wavelength, intensity, texture, or oth- 
er stimulus characteristics (1). Analo- 
gous "edge effects" occur in hearing at 

Fig. 1. Amplitudes (squares) 
and latencies (circles) of probe 
tone evoked wave V re- 
sponses with and without 
masking. Filled symbols are 
for responses to masked 
tones. The amplitude mea- 
surements are in arbitrary 
voltage units; SL, sound level. 
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discontinuities (peaks or valleys) in the 
power spectra of sounds (2). These phe- 
nomena are apparently produced by a 
class of inhibitory mechanisms that ef- 
fectively compare intensities in neigh- 
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Fig. 2. Masked and unmasked probe evoked 
responses from one subject. Upper traces are 
responses to 25-dB probes in the presence of 
50-dB maskers (re threshold in quiet). Lower 
traces show the effect of adding a 70-dB 
unmasker at 2.245 kHz. Positivity is upward; 
traces begin at probe tone onset and continue 
for 20 msec. 
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Fig. 3. Masking as a function 
of unmasker frequency. Open 
symbols are estimates based 
on wave V amplitudes (13). 
Filled symbols are psycho- 0 

physical threshold shifts. Cir- 
cles and squares denote two 
different subjects. Zero deci- 
bels refers to the masking pro- 
duced by the masking tone 
alone. Unmasking is shown as 
negative masking. 
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boring regions of the audio spectrum and 
enhance (exaggerate) the representation 
of any imbalance present (3, 4). Psycho- 
physical evidence for this type of inhibi- 
tion can be found in studies of auditory 
masking, where a pure tone's ability to 
interfere with the perception of sub- 
sequent stimuli (its "effective energy") 
can be greatly reduced in the presence of 
another sine wave a few semitones dif- 
ferent in frequency [two-tone unmasking 
(5)]. A similar process is seen in single 
auditory neurons, whose tone-driven fir- 
ing rates can be markedly reduced by 
adding a second tone [two-tone inhibi- 
tion or lateral suppression (6)]. That 
speech formants may be more clearly de- 
fined in the perceptual representation 
than in the physical stimulus (7) suggests 
the biological significance of this type of 
sensory processing. 

Evidence that a neural correlate of un- 
masking can be observed in peripheral 
nerve responses from nonhumans (8) led 
us to carry out the physiological and psy- 
chophysical studies outlined here. The 
neural data reported are wave V brain- 
stem responses from humans (9). The 
psychophysical data are measurements 
of two-tone unmasking obtained from 
the same subjects. 

Three shaped tone bursts served as 
stimuli: a 17.5-msec masker, a 17.5-msec 
unmasker, and a 5-msec probe. Probes 
were presented 2 msec after stimulating 
with either a masking tone or the two- 
tone combination [masker plus unmask- 
er (10)]. These stimulus complexes were 
presented repeatedly at a rate of 20 
per second. In all conditions, masker 
and probe frequencies were 2.0 kHz. 
Unmasker frequencies were spaced at 
1/6-octave intervals from 1.414 to 3.175 
kHz. 

Physiological masking was assessed 
by averaging 4096 or 8192 samples of 
probe-evoked electrical activity in the 
presence of a masker or masker-plus-un- 
masker (11). Psychophysical masking 
was measured by determining threshold 
shifts for probe tones under the same 
conditions. 

Figure 1 shows the effect of a masking 
tone on wave V responses to probes. 
The masker (at 40 dB re threshold in qui- 
et) reduced probe response amplitudes 
by approximately the same amount for 
each probe intensity. Probe response la- 
tencies increased in similar fashion. 

Figure 2 illustrates two-tone unmask- 
ing of wave V responses. The release 
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when a 2.245-kHz unmasking tone is 
added can be seen in the increased am- 
plitudes and decreased latencies of re- 
sponses to the probe. (Masker, unmask- 
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er, and probe are 50, 70, and 25 dB re 
threshold in quiet.) 

Figure 3 shows how an unmasker's ef- 
fectiveness depends on its frequency. 
Psychophysical and physiological un- 
masking are plotted together to show 
their similarity. Both functions show a 5- 
to 10-dB release from masking when the 
unmasker is placed 1/6 to 1/3 octave 
above the test frequency. 

A substantial inhibitory effect can thus 
be observed in auditory population re- 
sponses from the human central path- 
ways. The inhibitory phenomenon con- 
sists of an interaction between frequen- 
cies a few semitones apart. For the range 
of conditions examined to date, its mag- 
nitude and form agree reasonably well 
with psychophysical measurements from 
the same subjects. 

These observations do not necessarily 
mean that neurons in the wave V popu- 
lation are themselves subject to inhibi- 
tion, only that inhibitory phenomena oc- 
cur at some stage of the process leading 
to activity in the population. In fact, the 
extremely brief time-course of the phe- 
nomenon is consistent with [but does not 
necessarily imply (12)] inhibitory pro- 
cessing carried out by a preneural mecha- 
nism (4). 
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ubiquitous and that distinguishes the two 
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tion to this problem is to make chimeras 
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simultaneously [T. Houtgast, in Facts and Mod- 
els in Hearing, E. Zwicker and E. Terhardt, 
Eds. (Springer-Verlag, New York, 1974)]. Simi- 
larly, we have been unable' to demonstrate 
"physiological unmasking" in the simultaneous 
condition. 

11. The recording electrode was at vertex, the refer- 
ence at right mastoid, a ground electrode at left 
mastoid. The electroencephalogram was filtered 
below 0. kHz and above 3.0 kHz and amplified 
by 105 through the use of cascaded preamplifiers 
(Grass P15 and Tektronix type 122). 

12. J. J. Zwislocki, in Handbook of Perception, E. 
C. Carterette and M. P. Friedman, Eds. (Aca- 
demic Press, New York, 1978), vol. 4, p. 302. 

13. The effects of unmasker frequency on wave V 
amplitudes are converted to decibels by refer- 
ring voltage measurements to the intensity func- 
tion for masked tones in Fig. 1. The psycho- 
physical threshold shifts also plotted in Fig. 3 
are measured relative to the threshold of a probe 
tone in the presence of a masker alone. 

14. We thank Bruce Masterton and David Harris for 
their comments on earlier versions of this report. 
Portions were presented at the 97th meetings 
of the Acoustical Society of America, Boston, 
11 to 15 June 1979. 
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