minor and trace elements from seawater and incorporate these elements in their skeletons. Electron microprobe analyses of phosphorus in the calcite skeletons of calcareous nannoplankton show that, after a middle Eocene high, these plants incorporated low, but fluctuating amounts of phosphorus from early Oligocene to middle Miocene times (16). A slight, but steadily increasing phosphorus uptake occurs from late Miocene times onward (16). I believe that this increase reflects greater availability of phosphorus in the water from late Miocene times, since phosphorus is one of the major nutrients supplied by upwelled waters.

Sedimentological, paleontological, and geochemical evidence indicate that the Benguela upwelling system off northern Namibia originated in the early late Miocene (about 10 million years before the present). The evidence presented actually establishes the times of initiation of upwelling above site 362/362A only. Whether upwelling began all along the western coast of southern Africa at the same time is a moot point. Intuitively, it seems that, once the atmospheric and other conditions that drive the Benguela upwelling were in effect, upwelling would begin all along the coast with only a slight delay from place to place.

WILLIAM G. SIESSER Department of Geology, Vanderbilt University, Nashville, Tennessee 37235

References and Notes

- 1. T. J. Hart and R. I. Currie, Discovery Rep. 31,
- I.23 (1960); L. V. Shannon, S. Afr. Div. Sea
 Fish. Fish. Bull. 6, 27 (1970).
 R. V. Dingle, J. Geol. Soc. London 129, 337 (1972). 2. R. V. (1973)
- (1975).
 H. M. Bolli et al., Geotimes 20, 22 (1975); M. Melguen, Init. Rep. Deep Sea Drill. Proj. 40, 2007 999 (1978)
- 599 (1978).
 E. M. Van Zinderen Bakker, Sr., J. Biogeogr. 2, 65 (1975); W. G. Siesser, Init. Rep. Deep Sea Drill. Proj. 40, 965 (1978).
 K. V. Moroshkin, V. A. Bubnov, R. P. Bulatov, Oceanology 10, 27 (1970).
 W. G. Siesser in Autoretic Classel History and
- W. G. Siesser, in Antarctic Glacial History and World Palaeoenvironments, E. M. Van Zinde-6. ren Bakker, Ed. (Balkema, Rotterdam, 1978), p.
- H. M. Bolli et al., Init. Rep. Deep Sea Drill.
 Proj. 40, 183 (1978). Dr. J. Natland (Scripps Institution of Oceanography) did the shore-based processing of physical properties data used in Disc. 2010.
- Fig. 2. D. Bukry, *ibid.*, p. 635. W. B. F. Ryan, H. M. Bolli, G. N. Foss, J. H. Natland, W. E. Hottman, J. B. Foresman, *ibid.*, 9.
- p. 5.
 10. W. G. Siesser and R. V. Dingle, in American Association of Petroleum Geologists-Society of Economic Paleontologists and Mineralogists Annual Convention Abstracts of Papers (Hous-107) L. Diester-Haass, in Upwelling Ecosystems, R.
- 11. Boje and M. Tomczak, Eds. (Springer-Verlag, Berlin, 1978), p. 261.
 M. Toumarkine, Init. Rep. Deep Sea Drill. Proj.
- M. Ioumakine, *Int. Rep. Deep Sed Drul. Proj.* 40, 679 (1978).
 D. G. Jenkins, *ibid.*, p. 723.
 F. Proto Decima, F. Medizza, L. Todesco, *ibid.*, p. 571.
- *ibid.*, p. 571. 15. J. G. Erdman and K. S. Schorno, *ibid.* (Suppl.),
- 16. W. G. Siesser, S. Afr. J. Sci. 73, 283 (1977).
- 15 October 1979; revised 14 January 1980

SCIENCE, VOL. 208, 18 APRIL 1980

Sediment-Water Chemical Exchange in the Coastal Zone **Traced by in situ Radon-222 Flux Measurements**

Abstract. In situ radon-222 flux experiments conducted in benthic chambers in Cape Lookout Bight, a small marine basin on the North Carolina coast, reveal that enhanced chemical transport across the sediment-water interface during summer months is caused by abiogenic bubble tube structures. Transport rates for dissolved radon, methane, and ammonium more than three times greater than those predicted on the basis of molecular diffusion occur when open tubes are maintained by semidiurnal low-tide bubbling.

Chemical exchange across the sediment-water interface is an important process regulating the composition of the oceans (1). In the coastal zone, organicrich sediments can supply a major fraction of the nutrient requirements of primary producers in overlying water (2). The sediments are the site of intense remineralization during which microbial heterotrophs convert deposited organic carbon, nitrogen, and other elements into dissolved NH₄⁺, HCO₃⁻, CH₄, and other chemical species (3). The remineralization reactions together with diffusive transport, adsorption, and other processes produce concentrations of these products in the interstitial waters of the sediments which generally increase with depth. The rates of transport of the dissolved species from the sediments to the water column are, in turn, controlled by both the magnitude of the resulting concentration gradients in the interstitial water and the mechanism of sediment-water exchange.

Transport by molecular diffusion can be predicted by Fick's first law, modified for application to sediments (4):

$$J = -\phi D_{\rm s} (\partial C/\partial z)_{z=0} \tag{1}$$

where J is the vertical diffusive flux across the sediment-water interface, ϕ is the sediment porosity, D_s is the whole (bulk) sediment diffusion coefficient (4), and $(\partial C/\partial z)_{z=0}$ is the vertical concentration gradient in the interstitial water at the interface.

One calculates fluxes across the sediment-water interface in the ocean by means of Eq. 1, using measured porosities and concentration gradients coupled with estimated molecular diffusion coefficients, since molecular diffusion coefficients are difficult to measure experimentally. However, if the flux as well as the porosity and concentration gradient

Fig. 1. The Cape Lookout Bight, North Carolina, study site located approximately 110 km southwest of Cape Hatteras (CH). Flux studies were conducted at station A-1. Currents at station A-1 are generally $< 6 \text{ cm sec}^{-1} \text{ near}$ the bottom and as high as 28 cm sec⁻¹ near stations B-1 and B-5 during ebb and flood tide. Depth contours are in feet.

0036-8075/80/0418-0285\$00.50/0 Copyright © 1980 AAAS

285

for the species of interest are measured, Eq. 1 can be rearranged so that one calculates an experimentally defined or "apparent" whole sediment diffusion coefficient, termed $D_{s'}$. If the $D_{s'}$ values obtained exceed the theoretical molecular sediment diffusivities, some process that enhances the sediment-water exchange is implicated. Recent field studies of the exchange of CH_4 (5) and NH_4^+ (6) between the sediment and water in Cape Lookout Bight, North Carolina (Fig. 1), have yielded summertime chemical fluxes (Fig. 2) more than three' times greater than those predicted on the basis of molecular diffusion as calculated from Eq. 1. The $CH_4 D_{s'}$ values calculated as described above are

Fig. 2. Seasonal variations in chemical fluxes across the sediment-water interface observed in Cape Lookout Bight, North Carolina. In situ benthic chambers were used. Error bars $(1\sigma, where \sigma is the theoretical standard deviation)$ are calculated from multiple chamber emplacements.

Fig. 3. Seasonal variations in the apparent sediment diffusivities (D_s') calculated from in situ CH₄ and ²²²Rn flux measurements in benthic chambers in Cape Lookout Bight. Theoretical molecular sediment diffusivities (D_s) for CH₄ and ²²²Rn are also shown. Error bars = $\pm 1\sigma$.

 $m^{-2} sec^{-1}$

Rn (atom

also enhanced up to threefold. Macroinfaunal irrigation and physical sediment mixing often invoked to explain such enhanced transport from nearshore sediments (7-9) are not important in the bight during summer months (5); however, two alternative hypotheses can be generated to explain these results.

The first hypothesis postulates open tubes in bight sediments maintained by low-tide bubble ebullition during summer months (5, 8). The bubbling results from rapid CH₄ production and the attainment of saturation concentrations within 10 cm of the sediment-water interface (5). The cylindrical bubble tubes, which penetrate in the sediments to depths of greater than 5 cm, commonly range from 2 mm to 2 cm in diameter. We hypothesize that they enhance transport through the creation of additional exposed surface area and increased concentration gradients between overlying water trapped in tubes and deeper interstitial water enriched in dissolved CH₄ and NH_4^+ .

According to the second hypothesis, enhanced fluxes result from significant CH_4 and NH_4^+ production in organicrich flocculent material resting at the sediment-water interface. Verification of either hypothesis has important consequences for understanding biogeochemical cycling in the coastal zone and other organic-rich environments.

We report here the results of direct in situ ²²²Rn flux measurements which can be used to test these hypotheses. This radioactive noble gas, unlike CH₄ and NH₄⁺, is not subject to microbial and chemical transformations. A radon flux at our site above that predicted on the basis of molecular diffusion would support the bubble tube hypothesis. These are among the first in situ radon transport studies conducted with benthic chambers, and they demonstrate the feasibility of the technique (10).

The theoretical and analytical basis for the use of radon as a tracer in sediments has been established by Broecker (11) and was recently discussed by Hammond and his co-workers (9, 10). The distribution of radon in sediments is controlled by a balance between production from its parent isotope, ²²⁶Ra, diffusion and other transport processes, and radioactive decay (half-life, 3.83 days). The radon flux across the sediment-water interface may be calculated from Eq. 2 (11, 12):

$$J = (D_{\rm s}\lambda)^{1/2}(C_{\rm eq} - C_0)$$
 (2)

where C_{eq} is the radon concentration [atoms or disintegrations per minute (dpm) per cubic centimeter of wet sediment] in equilibrium with sedimentary ²²⁶Ra, C_0 is the radon concentration at the sediment-water interface (assumed to be equal to the value for the overlying water), and $\lambda = 2.1 \times 10^{-6} \text{ sec}^{-1}$. Measurements of J, C_{eq} , and C_0 allow for direct calculation of D_s' values. A similar result for CH₄ and ²²²Rn in the bight would imply a common mechanism for the elevated sediment-water exchange observed during the summer.

We measured radon fluxes in situ by monitoring concentration changes in diver-emplaced benthic chambers with known water volume and sediment surface area coverage (5, 6). Two or three 10- to 20-liter radon sample bottles (13) and a battery-operated submersible bilge pump were attached in series to each chamber. Water trapped in the system was mixed for 60 to 90 minutes before the initial samples were taken and before subsequent intermediate or final samples were taken (14). The technique was tested in the nearby White Oak River estuary at an upriver station where we expected molecular diffusion to dominate (15). Results from this test yielded reproducible fluxes and a mean calculated D_s' value of $1.2 \times 10^{-5} \text{ cm}^2 \text{ sec}^{-1}$ (Table 1), which is in reasonable agreement with theoretical molecular diffusion values (4) tabulated by Broecker and Peng (16).

Experiments in Cape Lookout Bight were conducted for 3- to 23-hour periods. We used increases in the radon concentrations in the chambers to calculate radon fluxes, using the equation:

$$J = \frac{V\lambda[C_{\rm f} - C_0 \exp(-\lambda t)]}{A[1 - \exp(-\lambda t)]} \qquad (3)$$

where V is the total volume of the chamber plus the sample bottles, A is the surface area of sediment trapped by the chamber, and t is the time between taking the initial (C_0) and intermediate or final (C_f) radon bottle samples. We also measured CH₄ and NH₄⁺ fluxes between low-tide bubbling episodes during the radon experiments, using 60-ml syringe samples taken directly from the chambers during the first few hours of each experiment. The results of the radon flux measurements (Table 1) obtained during June through November 1978 and in April 1979 in Cape Lookout Bight are plotted in Fig. 2.

A mean C_{eq} value of 810 ± 131 atoms per cubic centimeter of wet sediment (0.102 ± 0.017 dpm cm⁻³) was obtained from eight sediment cores at our site. Variations in C_{eq} in sediment sections 2 to 5 cm thick in the upper 20 cm do not exceed the analytical error.

Radon $D_{s'}$ values calculated by the use 18 APRIL 1980 Table 1. In situ ²²²Rn sediment-water flux measurements and calculated apparent sediment diffusivities (D_s') . Errors $= \pm 1\sigma$.

Date (1978)	Sedi- ment tempër- ature (°C)	Ben- thic cham- ber	Time (hours)	Radon flux $(atom m^{-2} sec^{-1})^*$		$D_{\rm s}' \times 10^5$
				Indi- vidual	Mean	$(\mathrm{cm_s}^2 \mathrm{sec}^{-1})$
		White O	ak River es	tuary		
20-21 July	25.2	Α	21.5	133 ± 17	125 ± 2	$12 + 02^{+}$
20–21 July	25.2	Х	21.5	136 ± 17	155 ± 2	1.2 ± 0.21
		Cape	Lookout Bi	ght		
6–7 June		в	21.0	48 ± 4	48 ± 4	1.7 ± 0.4
15-16 June	22.1	В	22.3	63 ± 5]	
15-16 June	22.1	Ċ	22.3	51 ± 5	55 ± 7	2.2 ± 0.6
15-16 June	22.1	Х	22.3	52 ± 5	J	
27-28 June	23.4	B	19.5	62 ± 7	62 ± 7	$2.8~\pm~0.8$
11-12 July	24.5	В	18.3	69 ± 6	69 + 2	3.1 ± 0.8
11-12 July	24.5	С	18.1	67 ± 6		3.4 ± 0.0
10–11 August	27.5	Α	21.7	55 ± 5)	
10-11 August	27.5	х	19.2	68 ± 6	62 ± 9	$2.8~\pm~0.9$
10-11 August	27.5	X (nb)‡	5.5	62 ± 9	J	
8-9 September	26.8	В	21.4	64 ± 5	59 + 08	24 ± 0.8
8-9 September	26.8	С	19.4	51 ± 5	JO - 78	2.7 ± 0.0
8-9 September	26.8	X§	21.2	> 52		
8-9 September	26.8	X (nb)‡	4.8	42 ± 8		
16-18 October	21.4	X (b)‡	3.5	47 ± 17	47 ± 17	1.6 ± 0.9
10-11 November	19.0	В	22.0	37 ± 3]	
10-11 November	19.0	С	22.8	50 ± 4	39 ± 10	1.1 ± 0.5
10-11 November	19.0	X	21.3	30 ± 4	J .	
30 April 1979	20.0	В	23.5	41 ± 5	41 ± 5	1.2 ± 0.3

*The radon flux in dpm per square meter per minute can be recalculated through multiplication by both λ (1.259 × 10⁻⁴ min⁻¹) and 60 sec min⁻¹. †Calculated from $C_{eq} = 2703 \pm 301$ atom cm_s^{-3} (0.34 ± 0.04 dpm cm_s^{-3}). ‡Short-term experiments during nonbubbling (nb) and bubbling (b) periods. \$The mean was calculated from the data of chambers B and C only; chamber X was inadvertently diluted with an unknown volume of seawater at the conclusion of the experiment.

of Eq. 2 and above data are plotted in Fig. 3 along with 1976-1977 CH₄ results. The similarity of $D_{s'}$ values for both species supports the bubble tube hypothesis since elevated transport of radon cannot be attributed to chemical or microbial processes. It is conceivable that radon transport could be elevated directly by low-tide bubbling during the longer experiments (18 to 23 hours) (CH₄ and NH₄⁺ flux experiments were conducted over 1 to 4 hours during nonbubbling high-tide intervals). No significant differences were seen in 3- to 5-hour radon experiments carried out between periods of low-tide bubbling and during active bubbling (Table 1); however, larger experimental errors and fewer data precluded conclusive results.

Preliminary studies of vertical interstitial-water radon distributions (17) in sediments away from bubble tubes yield D_s values in agreement with predictions of molecular diffusion. These results further suggest that bubble tubes play a role in sediment-water exchange.

We conclude that the enhanced transport observed in Cape Lookout Bight for CH_4 and nutrient elements is associated with the abiogenic bubble tube structures. Enhanced sediment-water chemical exchange can therefore occur in organic-rich coastal sediments in the absence of macroinfaunal irrigation and

current-induced physical mixing. Radon-222 is an excellent in situ tracer for such processes in the coastal zone.

CHRISTOPHER S. MARTENS Marine Sciences Program, Venable Hall, and Department of

Geology, University of North Carolina, Chapel Hill 27514

GEORGE W. KIPPHUT

Institute of Marine Sciences,

University of North Carolina,

Morehead City 28557

J. VAL KLUMP

Marine Sciences Program, University of North Carolina

References and Notes

- R. A. Berner, in *The Changing Chemistry of the Oceans*, D. Dyrssen and D. Jagner, Eds. (Almqvist and Wiksell, Stockholm, 1972), p. 347; K. A. Fanning and M. E. Q. Pilson, J. Geophys. Res. 79, 1293 (1974); F. T. Manheim, in Chemical Oceanography (Academic Press, New York, ed. 2, 1976), vol. 6, p. 171.
 S. W. Nixon, C. A. Oviatt, S. S. Hale, in *The Pola of Transitional Academic Transmission*
- S. W. Nixon, C. A. Oviatt, S. S. Hale, in *The Role of Terrestrial and Aquatic Organisms in Decomposition Processes*, J. M. Anderson and A. Macfadyen, Eds. (Blackwell Scientific, Oxford, 1976), p. 269; E. O. Hartwig, in *Estuarine Processes*, M. Wiley, Ed. (Academic Press, New York, 1976), vol. 1, p. 103; G. T. Rowe, C. H. Clifford, K. L. Smith, Jr., *Deep-Sea Res.* 24, 57 (1977).
- S. C. Rittenberg, K. O. Emery, W. L. Orr; Deep-Sea Res. 3, 23 (1955); E. Sholkovitz, Geochim. Cosmochim. Acta 37, 2043 (1973); E. Suess, in The Benthic Boundary Layer, I. N. McCave, Ed. (Plenum, New York, 1976), p. 57; C. S. Martens, R. A. Berner, J. K. Rosenfeld, Limnol. Oceanogr. 23, 605 (1978).
- McCave, Ed. (Plenum, New York, 1976), p. 57; C. S. Martens, R. A. Berner, J. K. Rosenfeld, Limnol. Oceanogr. 23, 605 (1978).
 R. A. Berner, Principles of Chemical Sedimentology (McGraw-Hill, New York, 1971), pp. 98-101; in The Benthic Boundary Layer,

I. N. McCave, Ed. (Plenum, New York, 1976), Equation 1 ignores insignificant deposit p. 48. Equation 1 ignores insignificant deposi-tional burial of dissolved species; molecular D_s values include corrections for tortuosity and porosity effects. The relation between D_s [in units of square centimeters of bulk sediment per this of square certainters of outs sectime per-second ($cm_s^2 \sec^{-1}$)] and the pure solution molec-ular diffusivity, D, is given by the expression: $D_s = D/\phi F$, where F is the formation factor [as described by F. T. Manheim, *Earth Planet. Sci. Lett.* 9, 307 (1970)]. Surface values of ϕ and Ffor station A-1 are approximately 0.94 and 1.2, respectively (5): therefore predicted D values respectively (5); therefore, predicted D_s values at our study site should be approximately 0.89

- 5. C. S. Martens and J. V. Klump, Geochim. Cos-
- C. S. Mattells and S. V. Klump, Octomm. Cosmochan. Acta in press.
 J. V. Klump, thesis, University of North Carolina, Chapel Hill (1979).
 M. B. Goldhaber, R. C. Aller, J. K. Cochran, J. K. Rosenfeld, C. S. Martens, R. A. Berner, Am. Cosmochan (1977).
- Sci. 277, 193 (1977). S. Martens, Science 192, 998 (1976)
- D. E. Hammond, H. J. Simpson, G. Mathieu, in Marine Chemistry in the Coastal Environment, Manne Chemistry in the Coastal Environment,
 T. Church, Ed. (American Chemical Society,
 Washington, D.C., 1975); J. Geophys. Res. 82,
 3913 (1977); R. C. Aller Am. J. Sci. 278, 1185 (1978); J.-P. Vanderborght, R. Wollast, G. Billen,
 Limnol. Oceanogr. 22, 787 (1977).
 D. E. Hammond and C. Fuller, in San Francisco
 Bay the Universe Fertures: T. L. Concrease Ed.
- 10. *Bay, the Urban Estuary*, T. J. Conomas, Ed. (American Association for the Advancement of Science, Washington, D.C., 1979). Results of benthic chamber radon transport studies in bio-
- W. S. Broecker, in *Diffusion in Oceans and Fresh Waters*, T. Ichiye, Ed. (Lamont Geological Observatory, Palisades, N.Y., 1965), 116.
- P. 110.
 The general equation describing the radon distribution in sediments is (11)

$$\frac{dC}{dt} = D_{\rm s} \frac{\partial^2 C}{\partial z^2} + \lambda C_{\rm eq} - \lambda C \tag{4}$$

where C is the measured radon concentration in atoms per cubic centimeter or disintegrations

per minute per cubic centimeter of bulk sediment. The steady-state solution to Eq. 4 is $C = C_{eq} \{1 - \exp[-(\lambda/D_s)^{1/2}z]\} +$

 $C_0 \exp[-(\lambda/D_s)^{1/2}z]$

(5)

In the bight water column, C_0 is approximately 0.5 to 2 dpm liter⁻¹. The radon flux across the sediment water interface is given by

 $J = -D_{s}(\partial C/\partial z)_{z=0} = -(\lambda D_{s})^{1/2}(C_{eq} - C_{0})$ (6)

- 13. G. Mathieu, in Annual Technical Report C00-2185-0 to the Energy Research and Develop-ment Administration (Lamont-Doherty Geologi-
- cal Observatory, Palisades, N.Y., 1977), Ap-pendix I, pp. 1-30. We conducted a series of mixing experiments, using a benthic chamber system in an artificial pond. Two or three samples were taken simulta-neously at set time intervals for radon analysis; 14. 99 percent mixing was obtained in 60 minutes, and the results agreed with numerical solutions
- to a set of mixing equations for the system. The experiment was conducted at station F [de-scribed in C. S. Martens and M. B. Goldhaber, 15.
- *Limnol. Oceanogr.* 23, 428 (1978)]. W. S. Broecker and T.-H. Peng, *Tellus* 26, 21 16. W. (1974)
- 17. G. W. Kipphut, unpublished data; R. M. Key, N. L. Guinasso, and D. R. Schink [Mar. Chem. 7, 221 (1979)] have recently demonstrated the application of diagenetic models to radon distributions in marine sediments.
- We thank G. Miller, J. Chanton, S. Marocchi-Klump, F. Sansone, P. Crill, and K. Gruebel for 18 assistance with field and analytical work. We are grateful to G. Mathieu and other personnel of Lamont-Doherty Geological Observatory for as sistance with radon equipment design and fabri-cation and ²²⁶Ra standards. We thank the Uni-versity of North Carolina, Institute of Marine Sciences, Morehead City, for use of boats and laboratory space. Financial support was pro-vided by grants OCE75-06199 and OCE78-9453 from the Marine Chemistry Program, Oceanography Section, National Science Foundation.

21 February 1979: revised 31 July 1979

Seizure Protection and Increased Nerve-Terminal GABA: **Delayed Effects of GABA Transaminase Inhibition**

Abstract. Changes in γ -aminobutyric acid (GABA) occurring in the presence and in the absence of GABA-containing nerve terminals were estimated in rats in which the dense GABA projection to the substantia nigra was surgically destroyed on one side of the brain. The net increase in GABA of the denervated nigra was compared with that of the intact nigra at various times after a single injection of γ -vinyl-GABA, which irreversibly inhibits GABA transaminase. Total GABA reached a maximum within 12 hours, but the GABA pool associated with nerve terminals did not increase until 36 hours and peaked at 60 hours. The onset and peak of anticonvulsant activity against maximal electroshock seizures directly paralleled the time course for the increase in GABA in nerve terminals, but was not positively correlated with that independent of the terminals. This result supports the concept that elevating GABA in nerve terminals facilitates GABA-mediated synaptic transmission and predicts anticonvulsant activity.

The recent availability of compounds that selectively alter either the concentration of γ -aminobutyric acid (GABA) or the activity of neuronal GABA receptors has provoked a resurgence of investigations into the neurotransmitter role of this amino acid (1). A major obstacle encountered in these studies is that of discriminating between the GABA compartment associated with nerve terminals and other compartments of GABA. Throughout the brain, synthesis, uptake, and degradation of GABA take place both in GABA-containing nerve terminals and in cells (glial and neural) that do not use this compound as a neurotransmitter (2, 3). As a result, the degree to which changes in endogenous GABA can be expected to influence GABA-mediated synaptic transmission is difficult to ascertain (3).

The relationship between elevation of brain GABA and protection against electrically or chemically induced seizures in animals illustrates this problem. Drugs that decrease brain GABA or block GABA receptors can induce seizures in a variety of species (4), whereas drugs that enhance GABA transmission have anticonvulsant properties (5). However, quantitative changes in the amount of brain GABA are often poorly correlated with susceptibility to seizures (6). Ideally, one would like to be able to predict the degree of seizure protection to be expected from a given elevation in brain GABA. The achievement of this goal is complicated by our inability to determine what portion of the increased GABA concentration is available for release at synaptic terminals (3).

The importance of this issue is underscored by the apparently discordant biochemical and pharmacological actions of γ -vinyl-GABA, a specific and irreversible inhibitor of GABA transaminase (7). This compound has been reported to be relatively ineffective as an anticonvulsant agent in several animal seizure tests, despite its ability to increase GABA in whole brain and in various brain regions (8). We hypothesized that some major portion of the GABA increase produced by this agent might be sequestered in compartments that do not directly participate in GABA-mediated synaptic transmission. We obtained evidence in support of this hypothesis by experimentally discriminating between nerve-terminal-dependent and nerveterminal-independent changes in GABA (9). We also discovered, however, that γ -vinyl-GABA possesses marked anticonvulsant activity which became evident only after a 2-day latency. To our knowledge, these experiments provide the first documentation that γ -vinyl-GABA can protect rats against tonic seizures produced by maximal electroshock and show that the appearance of this action coincides with an increase in nerveterminal-dependent GABA.

We assessed the effect of γ -vinyl-GABA on the duration of the tonic hindlimb extension component of maximal electroshock seizures. Duration of tonic hindlimb extension was unchanged 12 hours after γ -vinyl-GABA was administered (600 to 1600 mg per kilogram of body weight, injected intraperitoneally). However, 36 hours after the injection (1600 mg/kg) the duration of tonic hindlimb extension was significantly attenuated, and by 60 hours complete suppression was observed. Since antiseizure activity was maximal at 60 hours (Fig. 1). the dose-dependency of the effect was examined at this time (Fig. 2). The mean effective dose (ED₅₀) was about 900 mg/ kg; the dose-effect function parallels that obtained with sodium valproate [n-dipropyl acetate (DPA)], a drug used to treat human epilepsy.

To examine the possibility that γ -vi-

SCIENCE, VOL. 208, 18 APRIL 1980