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where L is the normal life expectancy in 
years, with X2 = .7 and r = .9999 
(P < .01 for zero correlation). Hence, 
the species-dependent response ratios 
are also linearly related to the respective 
life expectancies. 

Figure 2 shows the dose responses and 
similar relations describing the com- 
peting risk of natural death from old age. 
As individuals age, they enter regions of 
increasing risk. At high dose rates, the 
region of high risk for bone tumors is en- 
countered before the region of high risk 
for natural death, so that premature 
death from bone cancer is more probable 
than death from aging processes. At low 
dose rates, on the other hand, natural 
deaths occur before bone tumors devel- 
op. 

The intersection of these two risk dis- 
tributions, shown in Fig. 2, explains the 
practical threshold for bone cancer in 
people noted by Evans et al. (1). We 
speculated that this practical threshold 
occurs for each species at a dose rate 
that corresponds to the intersection of tL 
and a cancer risk that occurs three geo- 
metric standard deviations earlier than 
the median. For the skeleton of man, 
dog, and mouse, this yielded calculated 
practical threshold dose rates of 0.0039 
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diogenic risks occur concurrently, then 
the risk associated with the currently ac- 
cepted maximum permissible bone bur- 
den of 0.1 AtCi of 226Ra (0.0082 rad/day) 
for industrial workers (1) can be esti- 
mated. If 400 workers remain at the max- 
imum permissible bone burden for 50 
years beginning at age 20, we estimate 
that only one would die from radiogenic 
bone cancer or other abnormality, 200 
would die from nonradiogenic causes, 
and 199 would still be alive. The time re- 
quired to reach the median of the bone 
cancer risk distribution function would 
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incidence of biological effects and shows 
that the cumulative radiation dose alone 
is not an accurate indicator of risk with 
respect to the smaller cumulative doses 
required at lower dose rates to yield a 
specific bone cancer risk. Dose re- 
sponses were clearly nonlinear at any 
time after initial exposure or at a specific 
dose rate and were satisfactorily repre- 
sented as lognormal. The resultant inter- 
species comparison provides response 
ratios that may be applicable to injury 
from other radioactive materials or car- 
cinogenic agents. 
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Diphenylhydantoin: Pre- and Postnatal Administration 
Alters Diazepam Binding in Developing Rat Cerebral Cortex 

Abstract. Close correlations between the development of the anticonvulsant ef- 
fects of diphenylhydantoin and increases in tritiated diazepam binding were ob- 
served in rats from fetal day 16 to maturation. In contrast, significant decreases in 
tritiated diazepam binding were observed in 2- and 3-week-old rats that were exposed 
in utero to diphenylhydantoin. These changes can be correlated with reported in- 
creases in seizure susceptibility after prenatal exposure to diphenylhydantoin. 
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Studies on the maturation of the cen- 
tral nervous system and the development 
of seizures suggest that excitatory and 
inhibitory systems in the rat develop 
with a characteristic time sequence (1). 
From these ontogenic studies it appears 
that diphenylhydantoin (DPH) has a 
biphasic effect in the brains of maturing 
rats: excitatory effects in rats of less than 
12 days of age and then increasing inhib- 
itory effects that can be correlated to the 
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maturation of inhibitory systems by 17 to 
21 days of age (2). 

We have reported that treatment of 
adult rats with anticonvulsant, but not 
subanticonvulsant, doses of DPH signifi- 
cantly increases (3) specific high-affinity 
benzodiazepine binding (4) in rat brain 
tissue. We have now examined the ef- 
fects of DPH on benzodiazepine binding 
at various stages of neuronal maturation 
and compared these effects to the devel- 
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opment of the anticonvulsant activity of 
DPH. Since seizure susceptibility is in- 
creased in offspring of mothers treated 
with DPH during gestation (2), we also 
tested the effects of exposure in utero to 
DPH on benzodiazepine binding in ma- 
turing rats. 

Pregnant Sprague-Dawley (Taconic 
Farms) rats were allowed to give birth, 
and the pups in each litter, at various 
postnatal ages (I day, 7 days, 14 days, 21 
days), were separated into two treatment 
groups that were reduced to five pups 
per group. One hour before they were 
killed, littermate pups were injected in- 
traperitoneally with DPH (100 mg/kg) in 
dilute (pH 11) NaOH solution (DPH- 
treated) or with dilute NaOH solution 
alone (control). The volume was adjust- 
ed so that each pup received 0.04 ml of 
solution per gram of body weight. Non- 
littermate adult male rats (225 to 275 g) 
from the same supplier were also 
grouped (N = 5) and injected with DPH 
or dilute NaOH alone. In addition, eight 

pregnant rats at 16 days of gestation used to assess the specific binding of 
were injected with DPH (100 mg/kg, in- [3H]diazepam (6). Specific [3H]diazepam 
traperitoneally) or dilute NaOH solution, binding, affinities, and total number of 
and their fetuses were removed 1 hour binding sites at different postnatal ages in 
later. cerebral cortical membranes from con- 

Previous observations on the dose-de- trol animals were comparable to pre- 
pendent nature of DPH in benzodiaze- viously reported values (7). 
pine binding (3) led us to use a relatively When pregnant mothers were injected 
large (100 mg/kg) dose of DPH (5) in or- intraperitoneally with DPH, a statistical- 
der to demonstrate most clearly the en- ly significant decrease in [3H]diazepam 
hanced binding effects of DPH. The 1- binding was observed in the brains of 
hour time point was chosen to correlate their 16-day (gestational age) fetuses 
with peak anticonvulsant effects of DPH (Table 1). By postnatal day 21, pups in- 
at this dose in maximal electroshock jected with DPH 1 hour before they were 
seizure tests (5). No animals died during killed showed a significant increase in 
the treatment period, but young DPH- [3H]diazepam binding which approached 
treated pups were observed to "twitch" the magnitude of increase seen in corti- 
more frequently than vehicle-injected lit- cal membranes of adult rats (Table 1). 
termates, whereas animals aged 14 days The alteration in specific benzodiazepine 
or more appeared to be sedated and binding in animals injected with DPH 
moderately ataxic after this DPH treat- can be attributed to a 19 percent increase 
ment. in the total number of benzodiazepine 

Cortical membrane fractions prepared binding sites without a significant change 
from the cerebral cortex of pups (or from in their affinity for [3H]diazepam (Table 
whole brains of 16-day fetuses) were 1). 

Table 1. Specific binding of [3H]diazepam to cerebral cortical membranes of rats at various ages injected intraperitoneally with DPH (100 mg/kg) 
or vehicle and killed 1 hour later. Tissues from individual rats or from 16-day fetuses were assayed at 0.5 nM concentrations of [3H]diazepam; the 
dissociation constant (KD) and total binding were calculated by Scatchard analysis on pooled samples. A two-tailed Student's t-test was used for 
the statistical analysis of differences between specific binding after the addition of 0.5 nM [3H]diazepam (N.S., not significant). 

Control DPH 

A Ratio of protein Binding at Total Binding at Total P Age to wet weight - 0.5 nM Appar- number 0.5 nM Appar- number centge to wet weight ent number Penumberrc (day) of tissue* [3H]diazepam of sites [3diazepam of sites change from p 
(fmole/mg KD (f(fmole/mg (fmole/mg (fmolemg 

tissue) ( tissue) tissue) tissue) 

Fetusest 
16 0.012 ? 0.001 0.18 - 0.0 4.6 1.5 0.13 - 0.01 6.7 1.3 -28 < .02 

Pupst 
1 0.021 ? 0.002 1.7 + 0.0 5.2 19.3 1.6 ? 0.1 3.6 19.4 - 6 N.S. 
7 0.025 + 0.002 1.8 + 0.1 1.6 ? 0.1 -13 N.S. 

14 0.045 + 0.000 4.5 + 0.1 5.8 59.9 4.6 + 0.1 6.9 70.1 + 2 N.S. 
21 0.047 + 0.002 5.1 + 0.1 6.6 75.8 6.1 + 0.2 7.1 90.3 +20 < .02 

Adultst 
> 55 0.056 ? 0.002 4.9 + 0.2 5.5 75.4 6.4 + 0.2 5.8 103.8 +31 < .01 

*Measured in milligrams. tFour fetuses per treatment group. tFive animals per treatment group. 

Table 2. Specific binding of [3Hldiazepam to cerebral cortical membranes from offspring of rats injected subcutaneously with DPH (20 mg/kg) 
from days 14 to 20 of gestation; control pregnant rats received vehicle (dilute NaOH solution, p H 11) for the same period. Tissues from individual 
pups were assayed at 0.5 nM concentrations of [3H]diazepam; KD and total binding were calculated by Scatchard analysis on pooled samples for 
all rats in treatment group. The statistical test was as described in Table 1. 

Control DPH 

Age Binding at Total Binding at Total of Appar- Appar- Percentage u N 0.5 nM - number 0.5 nM number centage 
p(day) 3H]diazepam of sites [3H]diazepam D 

of sites chanrom p 
(fmole/mg 

K 
(fmole/mg (fmole/mg (fmole/mg (W) (W) 0.rnM tissue) tissue) tissue) tissue) 

1 10 0.95 + 0.05 1.04 + 0.05 + 9 N.S. 
7 10 1.7 +0.1 1.7 0.1 0 N.S. 

14 8 4.6 + 0.1 5.7 59.4 4.2 + 0.1 4.8 52.8 -10 < .05 
21 10 6.6 + 0.2 4.6 75.2 5.2 + 0.1 5.0 62.2 -21 < .01 
28 10 6.2 - 0.1 6.4 91.3 6.1 + 0.1 6.6 91.0 - 2 N.S. 
35 9 5.5 - 0.1 5.5 71.1 5.4 ? 0.1 5.5 62.4 - 2 N.S. 
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This change in the total number of 
binding sites is qualitatively different 
from the changes in the apparent affinity 
observed after the addition of y-amino- 
butyric acid (GABA) to homogenates or 
treatment of animals with agents af- 
fecting GABA in brain (8). In addition, 
we found that the direct, in vitro, addi- 
tion of GABA (10-5M) to cortical mem- 
branes from DPH-treated animals en- 
hanced [3H]diazepam binding at each age 
tested (data not shown). These data and 
data obtained by using [3H]diazepam 
binding and electrophysiological tech- 
niques in the adult rat (3) indicate that 
increases in [3H]diazepam binding after 
DPH administration are qualitatively dif- 
ferent and independent from effects of 
GABA on [3H]diazepam binding. 

The biphasic effect of a single injection 
of DPH on benzodiazepine binding (de- 
crease and then increase) in developing 
rats can be correlated with the effects of 
DPH in experimentally induced seizures 
during maturation. In rats under 12 days 
of age DPH has excitatory effects as 
measured by increased susceptibility to 
electroshock and chemically induced sei- 
zures, whereas after this period DPH de- 
creases susceptibility to seizures (2). 
Thus, a single injection of DPH induces 
changes in benzodiazepine binding dur- 
ing development that parallel the effects 
of DPH on the development of seizures 
in the maturing rat. 

We also studied the effect of exposure 
in utero to DPH on benzodiazepine bind- 
ing in maturing rats. Twelve pregnant 
rats received one subcutaneous injection 
of DPH (20 mg/kg in dilute NaOH, pH 
11) or vehicle (dilute NaOH, pH 11) daily 
for 7 days (days 14 through 20 of gesta- 
tion). All rats delivered on day 22 of ges- 
tation within a 24-hour interval. Pups 
from treated and control mothers were 
counted and weighed before they were 
killed at 1, 7, 14, 21, 28, and 35 days after 
birth. No significant differences in off- 
spring survival (there were no stillbirths 
or deaths during the treatment period), 
size of litter (6 control mothers, 62 pups; 
6 DPH-treated mothers, 65 pups) or 
weight of offspring were noted between 
treatment groups. 

The effects on [3H]diazepam binding in 
rats exposed in utero to DPH (Table 2) 
were different from those in rats treated 
postnatally with DPH (Table 1) at every 
age tested. For example, [3H]diazepam 
binding to cortical membranes from 21- 
day-old (postnatal age) rats treated in 
utero with DPH was significantly de- 
creased compared to that in rats of the 
same age that received DPH 1 hour be- 
fore they were killed. 
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The decrease of specific benzodiaze- 
pine binding in offspring exposed in 
utero to DPH can be attributed to a 17 
percent decrease in the total number of 
benzodiazepine binding sites without a 
significant change in their affinity for 
[3H]diazepam (Table 2). These decreases 
in [3H]diazepam binding sites in rats ex- 
posed in utero to DPH do not persist, but 
return almost to control values at 28 and 
35 days of age. Similar schedules of 
exposure to DPH in utero result in 
decreases in seizure threshold up to 
3 weeks after birth, with suscepti- 
bility returning to control levels there- 
after (2). 

Thus alterations in benzodiazepine 
binding can be closely correlated with 
the convulsant and anticonvulsant ef- 
fects of DPH at various stages of central 
nervous system maturation, with de- 
creases in binding being associated with 
increased seizure susceptibility and en- 
hanced binding with anticonvulsant ef- 
fects of DPH. Whether these changes in 
binding are causal or secondary to the 
convulsant and anticonvulsant actions of 
DPH is not known. Since changes in 
benzodiazepine binding have been re- 
ported in several animal models of epi- 
lepsy (9) and in animals that have re- 
ceived certain convulsant agents (8) or 
been subjected to electroshock (10), the 
binding changes may provide a biochem- 
ical marker for seizure mechanisms. 

The potency of various benzodiaze- 
pines against pentylenetetrazole-induced 
seizures is closely correlated to their ef- 
fects on [3H]diazepam binding (11). In 
addition to DPH (3), other compounds 
with anticonvulsant activity also alter 
benzodiazepine binding (8). Whether 
other active anticonvulsant compounds 
also affect benzodiazepine binding is un- 
known. 

In the present study, the changes in 
binding in rats exposed to DPH in utero 
were the opposite of those in rats inject- 
ed with DPH postnatally. In contrast, 
exposure in utero to benzodiazepines 
(12, 13) or phenobarbital (12) fails to alter 
consistently the number of benzodiaze- 
pine binding sites that develop post- 
natally. Thus, postnatal alterations in 
benzodiazepine binding after prenatal 
exposure may not be generalized to all 
compounds with anticonvulsant activity. 
However, the effects of some other 
drugs have been shown to depend on 
whether an animal is exposed to them 
pre- or postnatally. For example, the ef- 
fects on behavior and striatal [3H]spiro- 
peridol binding in rats subjected to 
prenatal and early postnatal exposure 
to the antipsychotic drug haloperidol 

are the opposite of those in adult 
rats subjected to long-term treatment 
with haloperidol (14). These data suggest 
that the fetal central nervous system is 
especially vulnerable to exposure to at 
least some psychoactive compounds. 

DOROTHY W. GALLAGER 
PIERRE MALLORGA 

Biological Psychiatry Branch, 
National Institute of Mental Health, 
Bethesda, Maryland 20205 
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