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The need for an approach combining 
anatomy with physiology in the study of 
neuronal circuitry has been recognized 
for more than a decade (1). The in- 
troduction of dyes that could also be 
used as recording solutions in micro- 
electrodes (2, 3) has made such com- 
bined studies feasible. Although a varie- 
ty of dyes can provide excellent results 
for light microscopy, all of the pre- 
viously reported techniques have had 
limited usefulness for the electron micro- 
scope (EM). Earlier methods with cobalt 
resulted in poor fixation, thought to be 
caused by the high concentration of co- 
baltous ions required for them to be seen 
in the EM (3-5). Procion dyes also dis- 
rupt organelles and may trigger phago- 
cytosis by surrounding glia (6, 7). The 
diffuse, electron-opaque horseradish 
peroxidase reaction product obscures 
the ultrastructure of the injected cell and 
greatly increases electrode resistance, 
making recording more difficult (7, 8). 
Here I report a technique for silver inten- 
sification of intracellularly injected co- 
baltous ions which overcomes these 
problems. 

Neurons were physiologically identi- 
fied and filled by cobalt-potassium-filled 
electrodes (9), which have both good 
recording and good staining character- 
istics. This technique allows unambigu- 
ous identification of the stained neuron, 
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including its synaptic sites, without the 
necessity of EM serial reconstruction. 
The cobalt-silver precipitate is discrete 
and highly electron-opaque making it 
easily seen in the EM. The results pre- 
sented here are from three fast extensor 
tibiae motoneurons stained in one meso- 
thoracic and two metathoracic ganglia of 
the locust Schistocerca americana gre- 
garia. Successful results with this tech- 
nique have also been obtained for 15 oth- 
er neurons in the locust, including local 
nonspiking interneurons (10). A prelimi- 
nary report of the technique has been 
made elsewhere (11). 

Neurons were identified in the meso- 
and metathoracic ganglia by standard 
techniques (12). An isotonic saline was 
used (13). After physiological identifica- 
tion of the motoneuron, cobaltous ions 
were injected into the soma with 10- to 
20-nA current pulses of 50-msec duration 
and 10-Hz frequency for 40 minutes. The 
ganglion was then excised, transferred to 
a Vaseline well on a glass slide, and 
flooded with fixative (2.5 percent glutar- 
aldehyde, 0.05M sodium phosphate buf- 
fer, 0.2M sucrose, pH 7.2). After 15 min- 
utes, the extreme edge of the ganglion 
opposite to the soma of the filled neuron 
was cut away to ensure that the solution 
would penetrate. The solution in the well 
was changed to 0.5 to 1.0 percent ammo- 
nium sulfide in buffer (0.05M sodium 
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Intracellularly Injected Cobaltous Ions 
Accumulate at Synaptic Densities 

Abstract. Physiologically identified neurons in the locust were iontophoretically 
injected with a mixture of cobaltous and potassium ions. After being fixed for elec- 
tron microscopy, 2.5-micrometer sections of the epoxy-embedded ganglia were in- 
tensified with silver. The intensified material was resectioned and examined in the 
electron microscope. The cobalt-silver precipitate appeared as discrete densities. 
Localized accumulations of the precipitate were seen within the injected cell along 
the neuronal membranes and especially at synapses. Location and recognition of the 
stained neuron in the electron microscope was facilitated by the tendency of the 
cobaltous ions to aggregate at the synaptic sites. 
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phosphate, 0.4M sucrose, pH 7.2) for 10 
minutes to precipitate the cobaltous ions 
as cobaltous sulfide. After two or three 
rinses in fresh fixative, the ganglion was 
left in fixative overnight (14 to 20 hours). 
The next day, after a buffer rinse, the 
ganglion was then fixed in osmium (1 
percent in 0.05M sodium phosphate buf- 
fer, 0.2M sucrose, pH 7.2) for 1 hour. 
This was followed by en bloc staining 
with 2 percent aqueous uranyl acetate 
for another hour and dehydration 
through a series of ethanols to propylene 
oxide. The procedures were carried out 
at 4?C. The ganglion was embedded in 
Epon 812. 

The ganglia were serially sectioned at 
2.5 ,tm, and the thick sections were dried 
onto glass slides. At this point the unin- 
tensified cobaltous sulfide was not vis- 

Fig. 1. Light and electron 
micrographs of a metatho- 
racic fast extensor tibiae 
motoneuron after cobalt in- 
jection and silver intensification. The first 0.2 aur 
tural analysis, because the silver precipitates he 
also because of some nonspecific scattering. In t 
silver is confined to the injected neuron, whet 
between 15 and 40 nm in diameter. (A) Light mi 
cell body and a portion of the primary neurite. 
injected neuron only. (B) Electron micrograph 
very dark cobalt-silver particles are confined to t 
neighboring soma (S2), the glia (G), or in the tr4 
body. Scale bars: (A) 50 tam; (B) 0.5 uam. 

Fig. 2. Pre- and postsynaptic endings marked b: 
ture is well preserved. (A) A marked branch ( 
synaptic to an unidentified neuron. The cobalt- 
brane among the vesicles, within the densities. ' 
the postsynaptic membrane (arrow). (B) In anot3 
tate is found among the paramembranous densit 
tified neurons (arrows). The presence of the p 
synapses. Scale bars, 200 nm. 

ible in the light microscope. Silver in- bait-silver was also found in the nucleus 
tensification of the cobaltous sulfide was of the injected cell. The ultrastructural 
carried out on the sections (14). Sections preservation of organelles in the stained 
were then mounted in Epon, and se- neuron (such as the mitochondria, Golgi, 
lected sections were photographed for and endoplasmic reticulum) is compara- 
later reference. In the primary neurite ble to that of the uninjected neighboring 
shown in Fig. IA, there was very little cells, even though in these experiments 
background reaction in the surrounding the soma was the site of dye injection. 
tissue. The lighter ring around the cell Examination of the primary neurite 
body is not a staining artifact, but is due and branches reveals equally good local- 
to the many glial fingers, or trophospon- ization of the cobalt-silver precipitate. 
gia, invading the somata of insect neu- Both pre- and postsynaptic endings are 
rons, but remaining unstained by this seen in stained locust motoneurons 

technique. (Fig. 2). The synaptic vesicles appear 
The serial thick sections were reem- normal and show no disruption in the in- 

bedded (15) and resectioned at 50 to 80 jected neurons. Synaptic densities are 
nm with a diamond knife. The sections retained, and in favorable section T-bar 
were picked up on 75-mesh collodion- capping structures over the presynaptic 
coated grids and stained with uranyl ace- dense projection (16) are evident. Identi- 
tate and lead citrate (Fig. IB). The co- fication of synapses was based on stan- 

dard structural criteria (16). 
The accumulation of the cobalt-silver 

.....~avily .. ...on theat specific loci within the neurons was an 

unexpected finding. The concentration 
was highest in the soma and appeared to 
be fairly evenly distributed there. In the 
rest of the neuron the highest concentra- 
tions were localized in three areas. In the 
primary neurite, most of the cobalt-silver 
was aggregated at or near the neuronal 
membrane. In the finer neurite branches, 
it was seen on or near microtubules and 
within the synaptic densities. Aggrega- 
tion was most marked at presynaptic 
densities, where the precipitate lined up 
among the vesicles (Fig. 2A). Cobalt-sil- 

of the thick section are not used for ultrastruc- ver was associated with 44 of 55 syn- 
favilyon the surface of the injected neuron andis pr s made by and nto the thre de- 
:he remaining 2.3 tam of the section, the cobalt- labeled neurons. re it appears as very electron-opaque spheres 
crograph of a 2.5-tm-thick section through the There are two possible explanations 
The cobalt-silver appears to be confined to the for the observed association of the co- 
of the area marked by the asterisk in (A); the balt-silver with neuronal membranes. (i) 
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densities by biochemical assay, and 
calmodulin antibody labeling in the EM 
has localized the protein on postsynaptic 
microtubules as well as in the densities 
(20). If the cobaltous ions in the labeled 
neuron are bound to calcium-binding 
proteins, the accumulation of cobalt-sil- 
ver at the synapses would indicate a 
higher concentration of these proteins 
there. That the cobalt-silver has been 
found in four-fifths rather than in all of 
the synapses is not unprecedented and 
may reflect on the active state of the la- 
beled synapses at the time of staining. In 
the crayfish, localization of cobalt-filled 
synaptic specializations in the light mi- 
croscope has been correlated with func- 
tional synaptic interaction (21), but a 
similar analysis has not been made at the 
EM level. 

This method permits neurons to be 
physiologically characterized and sub- 
sequently stained for EM by iontopho- 
resis. Neuronal processes are readily 
visible in both the light and the electron 
microscope. Ultrastructural preserva- 
tion of the tissue, including the dye-filled 
cell, is excellent, allowing the study of 
synaptic contacts onto, as well as from 
the marked neuron. The aggregation of 
cobalt-silver at the synaptic membranes 
facilitates location of the marked syn- 
apses in the EM. The accumulation at 
synapses and on or near microtubules is 
in good agreement with the sites where 
calmodulin has been localized. 
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somal epoxide hydrolase. 

Many natural and man-made com- 
pounds exist in the environment as ep- 
oxides, and epoxides may result from bio- 
logical oxidation of alkenes or arenes. 
Since some epoxidized compounds are 
electrophilically reactive and are toxins, 
mutagens, or carcinogens, it is important 
to understand their routes of degradative 
metabolism in mammalian tissue. 

In mammals, epoxides are degraded 
chemically and enzymatically through 
several pathways. Usually important is 
their conversion to 1,2-diols by epoxide 
hydrolases (1). These enzymes have 
been widely assumed to be bound to the 
endoplasmic reticulum or nuclear mem- 
brane (2); however, some studies have 
demonstrated that for many lipophilic 
substrates (such as terpenoid, steroid, 
and fatty ester epoxides), most of the 
epoxide hydrolase activity is present in 
the 100,000g soluble (cytosolic) sub- 
cellular fraction (3, 4). 

We recently found that the cytosolic 
fraction of mammalian liver also hy- 
drates a wide variety of simple aliphatic 
epoxides including some known muta- 
gens and carcinogens. Since the sub- 
strate selectivity of the cytosolic fraction 
partially overlaps that of the microsomal 
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fraction, it superficially appears that the 
results of our studies on the cytosolic 
epoxide hydrolases contradict those of 
many studies on the microsomal en- 
zymes. However, the different proper- 
ties of the cytosolic and microsomal en- 
zymes reported here merely indicate 
how epoxide hydrolase activity in the 
cytosolic fraction was overlooked by 
other laboratories for nearly a decade. 

Microsomal epoxide hydrolase is re- 
ported to hydrate monosubstituted and 
cis-l,2-disubstituted epoxides (2, 5). The 
cytosolic fraction hydrates the former 
most rapidly, but it also hydrates trans- 
1,2-disubstituted and tri- and tetrasubsti- 
tuted epoxides (3, 4). Styrene oxide has 
been used by many researchers for mon- 
itoring microsomal epoxide hydrolase 
activity (2, 5-10), but minimal hydration 
of styrene oxide was detected in the 
cytosolic fraction under several condi- 
tions employed in our study (11). Two 
closely related compounds, which differ 
from styrene oxide by a single carbon 
atom (Fig. 1), are rapidly hydrated 
(Table 1) (12, 13). These compounds in- 
clude trans-,8-methylstyrene oxide, 
which is hydrated by the cytosolic but 
not the microsomal fraction, and allyl- 
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the cytosolic fraction was not detected earlier in spite of intensive work on the micro- 
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