
analogy with other neurons (11), the first 
step is the action potential generated in 
the initial segment, and the second is that 
generated in the soma-dendritic mem- 
brane. The records in Fig. IE dem- 
onstrate that the presence or absence of 
an impulse in the initial segment has 
little effect on the size of the IPSP. 
However, when the impulse is permitted 
to invade the soma-dendritic membrane, 
there is a large increase in the size of the 
IPSP. It can be concluded, then, that the 
observed increment in the IPSP is attrib- 
utable to a synaptic pathway involving 
the soma-dendritic membrane. 

Our results directly demonstrate the 
presynaptic action of dendrites, for both 
mitral and granule cells of the olfactory 
bulb, and show that the reciprocal path- 
way remains intact when all sodium-de- 
pendent propagated action potentials are 
blocked by TTX. Such a pathway pro- 
vides for an all-or-none self-inhibition of 
mitral cells (12). These cells are also sub- 
jected to lateral inhibition, as is apparent 
from observations that orthodromic and 
antidromic stimuli below threshold for 
generating action potentials in the im- 
paled cell nevertheless evoke small 
IPSP's. 
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Role of Nitrogen Dioxide in the Biosynthesis of 

Nitrosamines in Mice 

Abstract. Groups of three to four mice were gavaged with aqueous solutions of 2 
milligrams of morpholine, after which they were exposed to nitrogen dioxide in in- 
halation chambers at concentrations of 0.2 to 50 parts per million for up to 4 hours. 
At sequential intervals during the exposure, mice were frozen and pulverized in liquid 
nitrogen, and the mice powder was extracted with ice-cold 35 percent aqueous meth- 
anol and dichloromethane; organic-phase concentrates were analyzed for N-nitro- 
somorpholine with a thermal energy analyzer interfaced to a gas chromatograph. 
The N-nitrosomorpholine yields, ranging up to about 2.3 micrograms per mouse, 
were time-dependent relative to the duration of exposure to nitrogen dioxide and 
dose-dependent relative to the concentrations of nitrogen dioxide; control levels (in 
mice that were gavaged with morpholine or distilled water and then exposed to air 
instead of nitrogen dioxide) were less than 5 nanograms per mouse. These prelimi- 
nary studies demonstrate the in vivo nitrosating potential of nitrogen oxides. 
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Concern about the public health haz- 
ards of carcinogenic nitrosamines in air, 
water, food, and consumer products is 
growing (1). This is paralleled by con- 
cern over the wide environmental distri- 
bution of nitrosamine precursors, nitrite 
and amines (2), from which nitrosamines 
can be readily synthesized both in vitro 
and in vivo (3, 4). The role of nitrite as a 
nitrosating agent is well documented; 
there is more limited evidence on nitro- 
sation by nitrogen oxides (NOx) of sec- 
ondary amines in the liquid or solid 
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phase (5), in the gas phase (6), and in vit- 
ro in plasma (5) or lung homogenates (7). 
To our knowledge, there are, however, 
no available data on in vivo nitrosation 
by NOx. Nitrogen oxides are common 
atmospheric pollutants, found in a wide 
range of anthropogenic sources, largely 
resulting from the combustion of fossil 
fuels, including auto exhaust, emissions 
from stationary sources such as utility 
plants, and a wide range of high-temper- 
ature combustion processes such as 
welding and foundry work (8). Addition- 
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Fig. 1. Time course of NMOR biosynthesis in 
mice. Groups of three to four male ICR mice 

2.0 - were gavaged with freshly prepared solutions 
of 2 mg of MOR (Aldrich Chemical) in 0.2 ml 

'<,,~^ /^^~~ ~of distilled water and immediately placed in 
exposure chambers (Nalge desiccators, modi- 

E 1.5- fled for gas inflow from the bottom and ex- 
haust from the top). Mice were then exposed 

/^p ^y^~ ~ to 50 ppm of NO2 (three to four mice per 
0m 1. - 5chamber, 5 cubic feet per hour, 20 volume 
vo 

1.0 - 50 ppm NO2 plus changes per hour) at intervals of from 0.5 to 4 
: / 2 mg morpholine hours. The required concentrations of NO2 0 

E / were produced by mixing stock NO2 (custom z 
0 5 /- _grade, Union Carbide) with air at an appropri- 

ate flow rate, prior to introduction into the 
chambers; we checked the accuracy of the ex- 
posure mixtures by periodically monitoring 

o0 i ' ? i X and analyzing the NO2 in the exhaust from the 
o 1 2 3 4 chambers, using the Griess-Saltzman reaction 

Time (hours) (19). Concurrent controls consisted of two 
mice exposed in separate chambers to NO2 alone for 4 hours, additional controls were gavaged 
with 2 mg of MOR or 0.2 ml of distilled water and exposed to air for identical periods in separate 
chambers. After exposure to NO2, the mice were killed by freezing in liquid nitrogen and blend- 
ed to a fine powder (20). Two or three aliquots (approximately 8 g each) were taken from each 
mouse powder and blended with 75 ml of ice-cold 35 percent aqueous methanol in a Waring 
Blendor (5 minutes, medium speed); a known amount of a nitrosamine standard [152 ng of di-n- 
propylnitrosamine (DPN), Aldrich] was then added, and blending continued for 1 to 2 minutes. 
Homogenates were divided in half and centrifuged (5000g, 25 minutes, 5?C; swinging bucket), 
supernatant was removed, and the pellets were extracted again with cold 35 percent methanol. 
The pooled supernates were extracted (twice) with an equal volume (total, 150 ml) of dichlo- 
romethane [(DCM), Burdick and Jackson] (21), and the organic layer was dried by passage 
through a cotton gauze (Ex-tube, Analytichem International) and concentrated to 2 ml in a 
Kuderna Danish concentrator (Kontes, 250 ml) kept in a 65?C bath. Aliquots (20 /l) of the 
concentrates from each of two or three powder samples were injected into the thermal energy 
analyzer-gas chromatograph (Thermo Electron modified model TEA-502) (22) for NMOR anal- 
ysis. Peaks were identified and quantitated by comparison with the retention time and response 
of reference nitrosamines (23). The plotted values are corrected for any background control 
NMOR levels and for the DPN standard recoveries and represent means of three to four mice + 
the standard deviation. 
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al sources of NO, include mainstream 
and sidestream tobacco smoke (9) and 
domestic gas stoves (10). 

We present here results of preliminary 
studies demonstrating in vivo nitrosation 
in mice of an exogenous amine, morpho- 
line (MOR) (II), by inhaled NO2. We al- 
so present data on the time- and dose- 
response relationships of the resulting 
N-nitrosomorpholine (NMOR) biosyn- 
thesis. 

The time dependence of NMOR bio- 
synthesis is illustrated in Fig. 1. When 
mice gavaged with 2 mg of MOR were 
then exposed to 50 parts per million 
(ppm) of NO2 for 0.5 hour, the NMOR 
yields were 370 ? 12.5 ng per mouse (or 
0.02 percent of the MOR administered). 
The NMOR yields increased about three 
times when the N02 exposure time in- 
creased from 0.5 to 1, hour, and then in- 
creased linearly as the NO2 exposure 
time increased to 4 hours, reaching 
2230 ? 138.6 ng per mouse (or 0.11 per- 
cent of the MOR administered). Variabil- 
ity within an experimental group (three 
to four mice) ranged from ? 3.3 to 
+ 13.3 percent, the higher degree of var- 
iability corresponding to the longer ex- 
posure periods. The NMOR yields in 
controls that were gavaged with MOR 
and then exposed to air instead of NO2 
were less than 5 ng per mouse; the 
NMOR yields were undetectable in con- 
trols that were either exposed to NO2 
alone or given only distilled water. The 
dose dependence of NMOR biosynthesis 
as a function of NO2 exposure levels is 
presented in Fig. 2. Yields of NMOR in 
MOR-treated mice increased with NO2 
concentrations from 0.2 to 50 ppm. The 
exposure of MOR-treated mice to as low 
as 0.2 ppm of NO2 for 4 hours resulted 
in a NMOR biosynthesis of 56 + 6 ng 
per mouse, significantly higher than the 
values for MOR and NO2 controls 
(P < .001); comparable yields of NMOR 
were produced by exposure to 0.2 ppm 
of NO2 for 16 hours, but the yields were 
less than one-half (21.6 ? 1.6 ng per 
mouse) as a result of exposure to 0.2 
ppm of NO2 for 0.5 hour (12). 

Experimental controls for artifactual 
formation of NMOR during analysis 
showed the following: (i) The addition of 
50 to 250 mg of sodium ascorbate to the 
powder derived from mice that had been 
gavaged with 2 mg of MOR and exposed 
to 50 ppm of NO2 for 4 hours (which was 
then homogenized and extracted as de- 
scribed in Fig. 1) resulted in a slight (less 
than 5 percent) but insignificant decrease 
in the NMOR yields as compared to 
approximately 2230 ng of NMOR per 
mouse in controls without ascorbate. (ii) 
When mice were exposed to 50 ppm of 

1476 

NO2 for 4 hours, then gavaged with 2 m 
of MOR,.and frozen immediately for hc 
mogenization and extraction, less tha 
200 ng of NMOR per mouse were detect 
ed (that is, less than 10 percent of th 
yields in controls gavaged with MOR an 
then exposed to NO2 for 4 hours). (iii 
Similar yields were found when 2 mg c 
MOR was added to the powder derive 
from mice that had been exposed to 5 
ppm of NO2 for 4 hours, prior to homog 
enization and extraction. 

Our data demonstrate the biosynthesi 
of NMOR in mice after in vivo nitrc 
sation of MOR by NO2. The NMO] 
yields in these experiments are likely t 
reflect a wide range of factors, includin 
the competing effects of MOR clearanc 
and NMOR catabolism and excretio 
(13) and macromolecular binding c 
NMOR (14). Artifactual formation c 
NMOR during analysis could account fo 
as much as 5 to 10 percent of the ot 
served yields. 
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Fig. 2. The NO2 concentration dependence ( 
NMOR biosynthesis in mice. The procedure 
were the same as in Fig. 1, except that mice 
gavaged with 2 mg of MOR, were sul 
sequently exposed to 0.2 to 50 ppm of NO2 fc 
4 hours, Dynacal permeation tubes (Metroi 
ics) were used to generate 0.2 and 15 ppm ( 
NO2 in the exposure chambers. For gene 
ating 0.2 ppm of NO2, air (2.5 liter/min) wa 
introduced into a plastic tube (15 cm long, 1 
cm inside diameter) containing a metal wafe 
device (5.72 cm long, 1.43 cm in diamete 
kept in a 35?C water bath; the other end of th 
plastic tube was connected to the exposu] 
chamber. The 15 ppm of NO2 was generate 
in a similar manner, except that a standar 
emission tube (10 cm long), kept at 42?C, wa 
used. Both the wafer device and standat 
emission tubes were conditioned overnig] 
prior to use, and NO2 concentrations wel 
colorimetrically confirmed (19). Exhaust fro 
the exposure chambers was passively elim 
nated in a chemical hood. 

g These data do not, however, identify 
- the site or mechanisms of the NMOR 
n biosynthesis. Liquid-phase nitrosation of 
t- amines by NOx is believed to be mediat- 
e ed by the reactive tautomeric forms of 
d N203 or N204, or by a free radical pro- 
i) cess (5). Nitrosation of MOR in vivo 
)f could occur in the pulmonary capillaries 
d or in the systemic blood stream by the 
0 nitrosating radical formed after absorp- 
- tion of NO2; NO, from sources such as 

tobacco smoke are known to be readily 
is absorbed into the blood during inhalation 
- (8, 9). Nitrous acid, formed as a result of 
R NO2 inhalation, could be secreted into 
o saliva and then react in the stomach with 
g MOR. 
e The possibility of in vivo nitrosation of 
n amines by NOx has clear public health 
)f implications (2, 8, 9, 15). Potentially 
)f available for in vivo nitrosation are the 
)r endogenous amines [such as dimeth- 
- ylamine (DMA)] at naturally occurring 

levels, endogenous amines (such as 
DMA) from exogenous sources such as 
meat or fish, and exogenous amines 
(such as MOR) from sources such as air 
pollutants. Recent findings of high con- 
centrations of NMOR in rubber-curing 
areas in tire factories (a high incidence of 
lung cancer has been observed in per- 
sons engaged in this work) and high 
concentrations of dimethylnitrosamine 
in leather tanneries have not been 

investigated epidemiologically (16). Lim- 
ited epidemiological studies have sug- 
gested some relationship between the 
ambient NOx concentrations and an ur- 
ban excess of cancer (17), although fur- 
ther investigations are clearly needed. 
Speculations have also been voiced 
about the possibility of an NOx-nitros- 
amine-cancer link (18). Our studies dem- 
onstrate the possible hazards due to 
NOx-mediated nitrosation of endoge- 
nous and exogenous amines. 
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The need for an approach combining 
anatomy with physiology in the study of 
neuronal circuitry has been recognized 
for more than a decade (1). The in- 
troduction of dyes that could also be 
used as recording solutions in micro- 
electrodes (2, 3) has made such com- 
bined studies feasible. Although a varie- 
ty of dyes can provide excellent results 
for light microscopy, all of the pre- 
viously reported techniques have had 
limited usefulness for the electron micro- 
scope (EM). Earlier methods with cobalt 
resulted in poor fixation, thought to be 
caused by the high concentration of co- 
baltous ions required for them to be seen 
in the EM (3-5). Procion dyes also dis- 
rupt organelles and may trigger phago- 
cytosis by surrounding glia (6, 7). The 
diffuse, electron-opaque horseradish 
peroxidase reaction product obscures 
the ultrastructure of the injected cell and 
greatly increases electrode resistance, 
making recording more difficult (7, 8). 
Here I report a technique for silver inten- 
sification of intracellularly injected co- 
baltous ions which overcomes these 
problems. 

Neurons were physiologically identi- 
fied and filled by cobalt-potassium-filled 
electrodes (9), which have both good 
recording and good staining character- 
istics. This technique allows unambigu- 
ous identification of the stained neuron, 
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including its synaptic sites, without the 
necessity of EM serial reconstruction. 
The cobalt-silver precipitate is discrete 
and highly electron-opaque making it 
easily seen in the EM. The results pre- 
sented here are from three fast extensor 
tibiae motoneurons stained in one meso- 
thoracic and two metathoracic ganglia of 
the locust Schistocerca americana gre- 
garia. Successful results with this tech- 
nique have also been obtained for 15 oth- 
er neurons in the locust, including local 
nonspiking interneurons (10). A prelimi- 
nary report of the technique has been 
made elsewhere (11). 

Neurons were identified in the meso- 
and metathoracic ganglia by standard 
techniques (12). An isotonic saline was 
used (13). After physiological identifica- 
tion of the motoneuron, cobaltous ions 
were injected into the soma with 10- to 
20-nA current pulses of 50-msec duration 
and 10-Hz frequency for 40 minutes. The 
ganglion was then excised, transferred to 
a Vaseline well on a glass slide, and 
flooded with fixative (2.5 percent glutar- 
aldehyde, 0.05M sodium phosphate buf- 
fer, 0.2M sucrose, pH 7.2). After 15 min- 
utes, the extreme edge of the ganglion 
opposite to the soma of the filled neuron 
was cut away to ensure that the solution 
would penetrate. The solution in the well 
was changed to 0.5 to 1.0 percent ammo- 
nium sulfide in buffer (0.05M sodium 
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Intracellularly Injected Cobaltous Ions 
Accumulate at Synaptic Densities 

Abstract. Physiologically identified neurons in the locust were iontophoretically 
injected with a mixture of cobaltous and potassium ions. After being fixed for elec- 
tron microscopy, 2.5-micrometer sections of the epoxy-embedded ganglia were in- 
tensified with silver. The intensified material was resectioned and examined in the 
electron microscope. The cobalt-silver precipitate appeared as discrete densities. 
Localized accumulations of the precipitate were seen within the injected cell along 
the neuronal membranes and especially at synapses. Location and recognition of the 
stained neuron in the electron microscope was facilitated by the tendency of the 
cobaltous ions to aggregate at the synaptic sites. 
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