
vasodilate the tail. Stability of the inter- 
nal body temperature is thereby assured 
within the limits possible through 
changes in vasomotor state (uppermost 
tracing in Fig. IA). 

Thresholds for initiation of other ther- 
moregulatory effector processes, such as 
shivering and panting, have been demon- 
strated to vary with both the ambient 
(skin) temperature and the local temper- 
ature either of the preoptic hypothala- 
mus (16) or of other thermosensitive 
sites such as the spinal cord (17) as con- 
trolled by implanted thermodes. The 
form of such functions often resembles 
the relation presented in Fig. 2A. Recent 
research in our laboratory has deter- 
mined how tail and foot vasodilation can 
be triggered by heating thermodes im- 
planted in the hypothalamus of squirrel 
monkeys restrained in cool environ- 
ments (12). Some of these results appear 
in Fig. 2B in a form that facilitates direct 
comparison with the adjacent microwave 
data. The striking resemblance lends cre- 
dence to the hypothesis that low-in- 
tensity microwaves, absorbed in the vi- 
cinity of thermosensitive neural tissue in 
the hypothalamus and elsewhere (for ex- 
ample, posterior hypothalamus, mid- 
brain, spinal cord, or deep viscera), can 
provoke immediate and dramatic 
changes in thermoregulatory effector re- 
sponse systems. Theoretical analyses 
(18) suggest that internal hot spots could 
occur under our experimental conditions 
(10 mW/cm2, 2450-MHz microwaves) 
that would locally elevate temperature as 
much as 0.5?C. A possible neural mecha- 
nism would integrate many small af- 
ferent signals from diverse structures 
throughout the body into a strong ef- 
fector command. The thermoregulatory 
neural substrate exhibits the diversity 
and integrative function appropriate to 
such a mechanism (19). Further, re- 
searches into the consequences of mul- 
tiple thermal inputs confirm that the 
magnitude of the thermoregulatory ef- 
fector response can be directly related to 
the number and sign of localized temper- 
ature changes occurring at discrete 
thermosensitive sites within the body 
(20). 
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Elevated Blood Acetaldehyde Levels in Alcoholics and Elevated Blood Acetaldehyde Levels in Alcoholics and 
Their Relatives: A Reevaluation 

The first evidence of elevated blood 
acetaldehyde concentrations in alcohol- 
ics (1.4 to 2.4 ,M) compared with con- 
trols (1.1 to 1.9 MM) after ethanol intake 
was reported by Truitt (1). Concentra- 
tions of 11 to 45 .tM in alcoholics and 4 
to 30 ,uM in controls were reported by 
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Korsten et al. (2). Schuckit and Rayses 
(3) reported elevated blood acetaldehyde 
concentrations in healthy young subjects 
with alcoholic relatives (65 to 78 ,uM) 
compared to control subjects (41 to 48 
yM). This study indicated that the pre- 
viously observed blood acetaldehyde dif- 
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ferences were not necessarily the result 
of alcoholism, and they suggested 
the possibility that the elevated acetalde- 
hyde concentrations were involved in 
the etiology of alcoholism. 

The data and the interpretations re- 
ported in the studies described above, 
however, must be reevaluated because 
of recent information regarding the de- 
termination of acetaldehyde in human 
blood (4, 5). These studies indicate that 
human acetaldehyde levels can be accu- 
rately measured only if the blood is im- 
mediately deproteinized (to avoid rapid 
disappearance of acetaldehyde initiated 
by the blood sampling) and after correc- 
tion for artifactual acetaldehyde forma- 
tion (during treatment of the blood). 

The, rapid disappearance artifact may 
explain the low acetaldehyde values re- 
ported by Truitt (1), who was aware of 
the need for the correction for artifactual 
formation of acetaldehyde (6). However, 
the data of Korsten et al. (2) almost cer- 
tainly reflect the artifactual formation re- 
action. These workers believed that they 
would avoid this problem by using thio- 
urea (7). However, it was later demon- 
strated that thiourea does not inhibit ac- 
etaldehyde formation in blood (8). Thus 
their acetaldehyde levels most likely re- 
flect a combination of the artifactual re- 
actions and what was left of the acetalde- 
hyde formed in vivo. In the case of the 
report by Schuckit and Rayses (3), the 
reliability of the acetaldehyde values is 
open to question because of a number of 
factors. Unfortunately, their analytical 
procedure (9), including freezing and 
thawing whole blood (which results in 
hemolysis) followed by heating in a 
head-space vessel, does not take into ac- 
count either disappearance or formation 
reactions. Thus it seems likely that most 
in vivo acetaldehyde had disappeared 
and what was left was mainly arti- 
factually formed acetaldehyde. Hemol- 
ysis greatly elevates acetaldehyde for- 
mation in human blood (6, 8), which 

probably explains the high overall blood 
acetaldehyde concentrations found by 
these investigators. 

The fact that the mechanism for the re- 
ported blood acetaldehyde differences 
might well be found in the analytical pro- 
cedures used does not necessarily negate 
the importance of these results. Even 
with inadequate methods, significant dif- 
ferences were found. 

So, what do these acetaldehyde dif- 
ferences reflect? There are three major 
possibilities in explaining the differ- 
ences. The first is that they could re- 
flect real differences in in vivo acetalde- 
hyde concentration. A second possibility 
is that the acetaldehyde formation reac- 
tion (or reactions) is more prominent in 
the. blood of alcoholics and their rela- 
tives. The third is that the amount of ac- 
etaldehyde disappearing from human 
blood during preparation for analysis dif- 
fers in alcoholics and their relatives as 
compared to controls. Because of the 
lack of further data it is too early to spec- 
ulate which, if any, of these alternatives 
provides an explanation for the acetalde- 
hyde differences. In further studies, for- 
mation and disappearance of acetalde- 
hyde during the analytical procedure 
should be controlled. 
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00101 Helsinki 10, Finland, and 
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When compared to controls, alcohol- 
ics challenged with alcohol show an in- 
crease in acetaldehyde in the blood. The 
same finding has been noted in non- 
alcoholic young men with alcoholic close 
relatives (when compared to controls). 
As indicated by Eriksson (1), the impor- 
tance of these findings should not be 
overlooked since, despite methodologi- 
cal difficulties (which we alluded to), 
?ubject and control bloods were handled 
by identical procedures (2). Imperfec- 
tions in methods would tend to add to the 
variance in each group and thus, if any- 
thing, obscure rather than magnify the 
difference between groups. 

The assay of acetaldehyde from blood 
has always been difficult. In February 
1979 we began to process bloods with 
immediate proteinization, adding thio- 
urea, and analyzing fresh samples 
while correcting for artifactual acetalde- 
hyde formation as recommended by 
Eriksson (1). Results to date on 15 pairs 
of nonalcoholic young men with alcoholic 
family histories compared to controls in- 
dicates a replication of the increased ac- 
etaldehyde in the group with positive 
family histories. As would be predicted 
from Eriksson's comments, the absolute 
levels of acetaldehyde, however, were 
less than half of those reported (2). 
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