
one good example. We have shown that 
the rate of change of acoustic cues rather 
than the linguistic nature of the stimuli, 
per se, may underlie this effect. Analysis 
of rapidly changing acoustic features 
may, in fact, play a critical role in the ac- 
curate perception of fluent speech by 
binding together phonetic segments so 
that at rapid transmission rates the tem- 
poral order and segmentation of speech 
may be preserved (12). It is in the areas 
of perception and production of rapidly 
changing sequential information that pa- 
tients with language disorders have been 
found to be specifically impaired (13, 14). 
Tallal and her colleagues (14, 15) have 
suggested that a basic deficit in per- 
ceiving and producing rapidly changing 
sequential information may contribute 
significantly to the speech and language 
disorders of some aphasic patients. 

We are not suggesting that the REA 
does not reflect superiority of the left 
hemisphere for processing linguistic ma- 
terial. Rather, the superiority of the left 
hemisphere for linguistic processing may 
reflect, at least in part, left-hemispheric 
dominance in processing rapidly chang- 
ing acoustic events, which is critical for 
the processing of fluent speech. 
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Microwaves Induce Peripheral Vasodilation in Squirrel Monkey 
Abstract. Vasomotor activity in cutaneous tail veins was indexed by changes in 

local skin temperature during exposure of the whole body to 12.3-centimeter continu- 
ous microwaves. At an ambient temperature (26?C) just below that at which tail 
vessels normally vasodilate, criterion dilation was initiated by 5-minute exposures to 
a microwave power density of 8 milliwatts per square centimeter. This intensity de- 
posits energy 'equivalent to approximately 20 percent of the monkey's resting meta- 
bolic rate but produces no observable change in deep body temperature. Intensity 
increments of 3 to 4 milliwatts per square centimeter for P?C reductions in ambient 
temperature below 26?C produced identical responses. That no vasodilation oc- 
curred during infrared exposures of equivalent power density suggests that non- 
cutaneous thermosensitive structures may mediate microwave activation of ther- 
moregulatory responses in the peripheral vasomotor system. 

In thermally neutral environments, the indexed by abrupt increases or decreases 
peripheral vasomotor response of warm- in local skin temperature. 
blooded (endothermic) species continu- Under specific exposure conditions 
ously provides fine control of body tem- and at relatively low intensities, electro- 
perature. Physiological regulation of magnetic energy of the microwave fre- 
heat flow into or out of the body depends quency range c,an produce body heating, 
largely on autonomically controlled often favoring deep tissues over the skin 
changes in the volume, rate, and distri- (4, 5). Exposure to intense microwaves 
bution of blood supplied to the skin. The raises the body temperature of animal 
stimulus to constriction or dilation of cu- subjects and interferes significantly with 
taneous vessels is often peripheral as, for ongoing behavioral and physiological 
example, when localized or whole-body processes, thereby upsetting thermal 
changes occur in the temperature of the homeostasis (6). On the other hand, in- 
skin (1). The stimulus can also originate vestigations into the biological effects of 
centrally, in the absence of peripheral low-intensity microwaves (often dubbed 
thermal events, when the deep body "nonthermal") have largely ignored the 
temperature rises (2). Rapid changes in thermoregulatory consequences of such 
peripheral vasomotor state have been exposure, although subtle thermal ef- 
produced in a variety of experimental an- fects caused' by exposure to power den- 
imals by altering the temperature of the sities of 1 to 10 mW/cm2 have been sus- 
anterior hypothalamus with stereo- pected but not demonstrated (7). We 
taxically implanted thermode devices now report that monkeys in a cool envi- 
(3). In such experiments, dilation or con- ronment can be induced to vasodilate by 
striction in highly vasoactive skin areas brief whole-body exposures to micro- 
such as ears,ttail, or extremities is often waves at intensities that produce no ob- 
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servable change in deep body ten 
ature. The characteristics of the ev< 
response resemble those produced b 
rect experimental heating of the] 
sensitive tissue in the hypothalamus 

Three adult male squirrel mon 
(Saimiri sciureus) served as subj 
They were restrained in a chair, one 

iper- time, in the far field of a horn antenna 
oked inside an air-conditioned electromagnet- 
)y di- ically anechoic chamber (8). Rectal and 
rmo- four representative skin temperatures 
s. (abdomen, tail, leg, and foot) were mon- 
keys itored continuously with small copper- 
ects. constantan thermocouples (9, 10). After 
at a minimum 2-hour equilibration to a cool 
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Fig. 2. Threshold functions for vasodilation of the squirrel monkey tail (A) produced 
minute whole-body exposures to 2450-MHz continuous microwaves and foot (B) produe 
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implanted water-perfused thermodes. (A) Each data point represents the least microwave 
er density or absorbed microwave energy required to induce criterion tail skin warming ir 
monkeys at the ambient temperature indicated. (B) Each data point represents the least in 
in preoptic temperature, measured bilaterally 2 mm from the thermodes, required to i 
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environment of constant temperature 
(range, 22? to 26.5?C), at which tail and 
extremities were fully vasoconstricted 
(11, 12), the monkey underwent 5-minute 
exposures to 2450 ? 25 MHz continuous 
microwaves. Microwave power density 
(10), initially at a low level of 2.5 to 4 
mW/cm2, was increased at each succes- 
sive exposure until a criterion tail vaso- 
dilation occurred. This criterion was de- 
fined by an abrupt and rapid rise in tem- 
perature of the tail skin that exceeded 
any increase in air temperature and that 
persisted after the end of the microwave 
exposure. Figure IA shows an example 
of criterion tail vasodilation in one mon- 

of 5- key equilibrated to an ambient temper- 
atched ature of 25?C. The microwave power 
inuous density producing the response in this 
red ra- case was 10 mW/cm2, which represents a 

whole-body energy absorption rate of 1.5 
to a W/kg (13) or roughly 25 percent of the 

) Ex- resting metabolic heat production of the 
of in- squirrel monkey (11, 14). 

s, 
, 

p Microwave power densities below that sepa- 
:overy which initiated tail vasodilation often in- 
lilation creased the temperature of the air or skin 
y rapid areas other than the tail. Control experi- 
i tern- ments (Fig. IB) demonstrated that tail 0 mW/ 
ise i'n vasodilation was not initiated passively 
e. (B) as a result of elevated air temperature. 
lfrared This monkey, also equilibrated to a 25?C 
ig in- environment, failed to exhibit any 
ine de- change in peripheral vasomotor state 
ons in when exposed to infrared radiation of 

equivalent power density to the micro- 
waves (15). Taken together, these results 
suggest that thermosensitive structures 
other than those in the skin may be re- 
sponsible for altered thermoregulatory 
responses during microwave exposure. 

The microwave power density re- 
quired to stimulate criterion tail vasodi- 
lation was directly related to the environ- 
mental temperature in which the monkey 
was restrained. Figure 2A summarizes 
the data from 16 experiments on three 
animals at discrete ambient temperatures 
that range downward from 26.5?C, the 
temperature at which the tail vessels of a 
sedentary monkey may dilate spontane- 
ously (11, 12). The plotted points de- 
scribe a linear relationship which reveals 
that, to initiate a criterion tail vasodila- 
tion response above threshold, an in- 

43 crease of 3 to 4 mW/cm2 in microwave 
power density is required for every 1?C 
reduction of ambient temperature. A 
second abscissa relates the data to ab- 

I by sorbed microwave energy based on our 
ced by dosimetry (13). Thus, in a 23?C environ- 
:h four ment, when the animal's metabolic heat 
e pow- production is elevated 2.5 to 3 W/kg 
three above the resting level (11, 14), micro- 

induce wave energy deposited at a rate approxi- 
mating this metabolic elevation will 
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vasodilate the tail. Stability of the inter- 
nal body temperature is thereby assured 
within the limits possible through 
changes in vasomotor state (uppermost 
tracing in Fig. IA). 

Thresholds for initiation of other ther- 
moregulatory effector processes, such as 
shivering and panting, have been demon- 
strated to vary with both the ambient 
(skin) temperature and the local temper- 
ature either of the preoptic hypothala- 
mus (16) or of other thermosensitive 
sites such as the spinal cord (17) as con- 
trolled by implanted thermodes. The 
form of such functions often resembles 
the relation presented in Fig. 2A. Recent 
research in our laboratory has deter- 
mined how tail and foot vasodilation can 
be triggered by heating thermodes im- 
planted in the hypothalamus of squirrel 
monkeys restrained in cool environ- 
ments (12). Some of these results appear 
in Fig. 2B in a form that facilitates direct 
comparison with the adjacent microwave 
data. The striking resemblance lends cre- 
dence to the hypothesis that low-in- 
tensity microwaves, absorbed in the vi- 
cinity of thermosensitive neural tissue in 
the hypothalamus and elsewhere (for ex- 
ample, posterior hypothalamus, mid- 
brain, spinal cord, or deep viscera), can 
provoke immediate and dramatic 
changes in thermoregulatory effector re- 
sponse systems. Theoretical analyses 
(18) suggest that internal hot spots could 
occur under our experimental conditions 
(10 mW/cm2, 2450-MHz microwaves) 
that would locally elevate temperature as 
much as 0.5?C. A possible neural mecha- 
nism would integrate many small af- 
ferent signals from diverse structures 
throughout the body into a strong ef- 
fector command. The thermoregulatory 
neural substrate exhibits the diversity 
and integrative function appropriate to 
such a mechanism (19). Further, re- 
searches into the consequences of mul- 
tiple thermal inputs confirm that the 
magnitude of the thermoregulatory ef- 
fector response can be directly related to 
the number and sign of localized temper- 
ature changes occurring at discrete 
thermosensitive sites within the body 
(20). 
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changes in thermoregulatory effector re- 
sponse systems. Theoretical analyses 
(18) suggest that internal hot spots could 
occur under our experimental conditions 
(10 mW/cm2, 2450-MHz microwaves) 
that would locally elevate temperature as 
much as 0.5?C. A possible neural mecha- 
nism would integrate many small af- 
ferent signals from diverse structures 
throughout the body into a strong ef- 
fector command. The thermoregulatory 
neural substrate exhibits the diversity 
and integrative function appropriate to 
such a mechanism (19). Further, re- 
searches into the consequences of mul- 
tiple thermal inputs confirm that the 
magnitude of the thermoregulatory ef- 
fector response can be directly related to 
the number and sign of localized temper- 
ature changes occurring at discrete 
thermosensitive sites within the body 
(20). 
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