
continued convergence at a rate of 5 cm/ 

year could have produced potential slip 
of 4 m. That amount of slip, if released 
today in one event, might generate a 

magnitude 8 earthquake in the remainder 
of the gap. 

No specific premonitory phenomena 
are recognized at present in this region. 
McCann et al. (3) imply that the gap may 
be the site of a major earthquake within 
the next few years, based on the spatial- 
temporal pattern of earthquakes during 
the past 20 years. However, the timing 
could be affected by earthquakes in ad- 
jacent regions. For example, a major 
earthquake on the Denali-Totschunda- 
Chatham Strait fault system, which lies 
to the north and east, might partly re- 
lieve the stress within the gap, thus in- 

creasing the time until the next large 
earthquake. Nevertheless the region be- 
tween Kayak Island and Icy Bay appears 
to be among the most likely sites for the 
next major earthquake in the United 
States. As such, the area should be the 
site of intensified observations, both for 
earthquake prediction and for studies of 
strong ground motion. 
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High-Pressure Phase in Americium Metal 

Abstract. X-ray diffraction studies at high pressure (above 150 kilobars) show that 
americium metal undergoes a phase change from a high-symmetry, face-centered 
cubic structure to an orthorhombic a-uranium structure. This transition results from 
the onset of f-electron bonding as the lattice is compressed. 
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Abstract. X-ray diffraction studies at high pressure (above 150 kilobars) show that 
americium metal undergoes a phase change from a high-symmetry, face-centered 
cubic structure to an orthorhombic a-uranium structure. This transition results from 
the onset of f-electron bonding as the lattice is compressed. 

Studies on americium metal (1) have 
shown two stable structures at atmo- 
spheric pressure: a high-temperature, 
face-centered cubic (fcc) structure and a 
low-temperature (< 700?C) double hex- 
agonal-close-packed (dhcp) phase. Ste- 
phens et al. (2) measured compressions 
to 30 kbar of samples containing both the 
fcc and dhcp forms. Akella et al. (3) re- 
ported an fcc structure at 65 kbar with a 
lattice constant of 4.684 A. Our work ex- 
tends compression values for americium 
metal to much higher pressures (- 160 
kbar) and reveals a third phase, the or- 
thorhombic a-uranium structure. Since 
americium is the first actinide element to 
have nonbonding f electrons, this transi- 
tion demonstrates that these f electrons 
can be forced to participate in the bond- 
ing under pressure. 

Our sample contained 2000 parts per 
million (ppm) of ytterbium and less than 
100 ppm of other impurities. Normally 
pure americium has the dhcp structure 
under ambient conditions. The presence 
of the ytterbium in our sample allowed 
the high-temperature fcc phase to be re- 
tained after quenching (4). 

The experimental apparatus included a 
diamond anvil cell with a film cassette 
described by Bassett et al. (5). The dia- 
monds had a culet diameter of 600 ,tm. A 
265-,tm-thick gasket (Inconel X-750) pre- 
indented to 60 ,tm was used with a hole 
diameter of 190 Am. The sample cham- 
ber formed by the hole in the gasket and 
the diamond tips contained the ytter- 
bium-stabilized americium sample, sev- 
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eral single-crystal ruby chips and pow- 
dered aluminum for the pressure calibra- 
tion measurements, and silicone diffu- 
sion pump oil to serve as a quasi-hydro- 
static pressure medium. 

Pressures were measured by the ruby 
fluorescence method (6) before and after 
each film exposure (except for the mea- 
surements at 177 kbar). After pressure 
changes, the cell was allowed to relax for 
at least 1 day before any data were 
taken. For each pressure measurement, 
a ruby chip from the original supply was 
used as a temperature standard at 1 bar 
to eliminate errors due to possible tem- 
perature shifts in the fluorescence lines. 
The compression of the powdered alumi- 
num seen in the high-pressure diffraction 
patterns provided a check on the sample- 
to-film distance. Independent pressure 
determinations from the ruby fluores- 
cence and aluminum diffraction lines 
were in good agreement within their re- 
spective error limits. 

All x-ray diffraction patterns were 
made with Mo Ka radiation (wavelength 
X = 0.7107 A) and were recorded on Ko- 
dak Industrex AA film. The x-ray tube 
was operated at 45 kV and 20 mA, and 
exposure times were 500 to 600 hours. 
After the films were developed, they 
were scanned and their density values 
digitized. In this form the data were then 
processed with an image enhancement 
computer program (7); an additional en- 
largement was made to simplify mea- 
surements of the 20 diffraction angles. 

Diffraction films were obtained at 
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Table 1. Structural data for americium metal at pressure. 

Pressure Structure Lattice Unit cell Atomic 
(kbar) type constants (A) volume volume 

0 fcc a = 4.894 117.15 29.29 

65* fcc a = 4.684 102.77 25.69 
152 + 2 Orthorhombic a = 3.063 + 0.004 

a-uranium b = 5.968 + 0.010 94.49 23.62 c = 5.169 + 0.008 
y = 0.1025 + 0.0025 

161 + 2 Orthorhombic a = 3.060 ? 0.005 
a-uranium b = 5.962 + 0.011 

c = 5.155 ? 0.008 9 

y = 0.1025 + 0.0025 

177 + 2 Orthorhombic a = 3.046 ? 0.004 
a-uranium b = 5.957 + 0.009 

c= 5.148 + 0.007 
y = 0.1025 + 0.0025 

*From Akella et al. (3). 
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Table 2. Observed (o) and calculated (c) crystal data for americium metal at 152 kbe 

sin2 0o do Io sin2 0c dc Ic 

0.0169 2.7317 40 0.0170 2.7229 51.2 11 
0.0188 2.5928 100 0.0189 2.5850 100.0 02 
0.0215 2.4256 50 0.0218 2.4092 42.5 11 
0.0359 1.8745 40 0.0359 1.8747 38.9 11 
0.0502 1.5864 30 0.0501 1.5873 33.4 13 
0.0537 1.5329 10 0.0539 1.5300 8.6 20 
0.0570 1.4889 20 0.0567 1.4923 20.4 02 
0.0598 1.4533 10 0.0595 1.4562 10.7 11 
0.0730 1.3148 30 0.0728 1.3167 31.3 22 
0.0751 1.2963 10 0.0756 1.2925 12.6 04 
0.0881 1.1973 10 0.0879 1.1985 14.4 13 
0.0933 1.1635 -(311A1) 0.0926 1.1676 9.7 11 
0.1016 1.1147 -(222A,) 0.1021 1.1120 6.5 15 

pressures of 111, 125, 152, 161, and 177 
kbar. The diffraction patterns at 111 and 
125 kbar were complex, and an inter- 
pretation will require further work. The 
higher pressure patterns could be un- 
ambiguously interpreted as from an a- 
uranium type structure (8). Except for 
two weak lines at large 20 values, there 
were no overlapping or interfering lines 
from either the gasket material or the 
aluminum powder. 

The structure from 152 to 177 kbar is 
the a-uranium orthorhombic with space 
group Cmcm (No. 63) and four atoms per 
unit cell located in spatial position set 
4(c): +(0,y,l/4); +(1/2,112+y,1/4) (9). 
The lattice constants at 152 kbar are list- 
ed in Table 1. The position parameter 
y = 0.1025 ? 0.0025 was found by trial 
to give a good fit to the intensity data. 
Powder diffraction intensities for Mo Ka 
radiation were calculated with neutral 
form factors and the ANIFAC program 
(10). Corrections were made for the 
Lorentz polarization factor but not for 
absorption or thermal motion of the 
atoms. 

In Table 2, we list the observed and cal- 
culated values of sin2 0, the interplanar 
distances d, and the relative intensities I, 
for the (hke) reflections observed from 
the sample at 152 kbar. Agreement be- 
tween calculated and observed values is 
very good. Our americium crystallo- 
graphic data at 152, 161, and 177 kbar are 
presented in Table 1 along with earlier 
lower pressure results of other workers. 
The relative volume change V/Vo as a 
function of pressure is illustrated in Fig. 
1. The three independent sets of data are 
in close agreement; the fact that they can 
be connected by a smooth curve in- 
dicates that the volume changes at the 
phase boundaries are small. 

The high-pressure a' phase of cerium 
has also been found to have the a-urani- 
um structure (11). Thus, americium is 
the third element in which a phase with 
the a-uranium structure has been discov- 

1354 

ered and the second in which thi, 
curred with pressure. Because a-u 
um, a'-cerium, and the new pha, 
americium have different valences 
stability of the a-uranium structur 
pears to be independent of the nu 
of bonding electrons. 

The change from a typically me 
crystal structure (fcc) to an exotic o 
low symmetry can be predicted or 
basis of an increasingly evident ap; 
ance of Sf-like charge in the vicini 
the atomic cell boundary with incre; 
pressure. Calculations for free ator 
the actinide series show that wit] 
creasing atomic number the densil 
the Sf-like charge cloud at a distance 
responding to the point midway bet) 
,the atoms reaches a maximum for p 
nium (atomic number Z = 94) and 
drops rapidly. The maximum is ca 
by the steady radial contraction of t 
orbitals with a concurrently increasi 
shell electron population. Exotic s 
tures at atmospheric pressure are se 
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hkf and plutonium for which this swelling is 

the largest. The absence of an exotic 
t0 structure in americium (Z = 95) at 1-bar 
41, 002 .1,002 densities is consistent with the con- 
.2 traction of the 5f shell into the core. 
1 However, with increasing compression, 
)0 a stage is reached in americium where 
Z3, 040 the density of the Sf-like charge midway 13 
1, 202 between atoms is comparable with that 

t2, 004 of plutonium at low densities where the 
?3 exotic a-plutonium structure exists. 
04 On the basis of the radial charge den- 

sities calculated by means of a relativ- 
istic atomic structure program (12) for 
the americium atom, the corresponding 

s oc- density of the metal is predicted to be 
irani- about 18 percent above normal, in agree- 
se of ment with our measurements. Therefore, 
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Although the oxygen supply of marine 
sediments is of great importance to the 
benthic community, such information 
has been virtually nonexistent. The main 
reason is that no satisfactory method has 
been available for the accurate detection 
of sedimentary pore water concentra- 
tions. Because better estimates are lack- 
ing, the thickness of the brown, oxidized 
surface sediment having a positive oxi- 
dation-reduction potential has often been 
used as an indication of the penetration 
depth of oxygen into sediments (1). With 
the aid of polarographic oxygen micro- 
electrodes, we have made the first accu- 
rate measurements of oxygen in marine 
sediments and have demonstrated the 
absence of oxygen in the deeper parts of 
this layer (2). The anoxic part of the 
brown layer is often much thicker than 
the oxic part. Earlier estimates of the 
depth of oxygen penetration into sedi- 
ments therefore tend to be too high. We 
found that it is possible to calculate the 
approximate depth of oxygen pene- 
tration from the rate of oxygen uptake by 
the sediment surface, and this parameter 
is normally measured in sediment stud- 
ies. 

All the sediment samples were collect- 
ed during a 2-week period in late Novem- 
ber 1978. The sampling localities, all in 
coastal Danish waters, were situated at 
water depths from 4 to 44 m. The sedi- 
ment was sampled with a Haps corer (3), 
from which subsamples were taken out 
with Plexiglas cylinders (inside diameter, 
46 mm). Only cores for which there was 
no resuspension of the sediment material 
during the sampling procedure were used 
in the analysis. Oxygen profiles and the 
oxygen consumption rate of the sedi- 
ment were determined while the cores 
were protected from light, immediately 
after sampling. The oxygen profiles were 
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depth of oxygen penetration into sedi- 
ments therefore tend to be too high. We 
found that it is possible to calculate the 
approximate depth of oxygen pene- 
tration from the rate of oxygen uptake by 
the sediment surface, and this parameter 
is normally measured in sediment stud- 
ies. 

All the sediment samples were collect- 
ed during a 2-week period in late Novem- 
ber 1978. The sampling localities, all in 
coastal Danish waters, were situated at 
water depths from 4 to 44 m. The sedi- 
ment was sampled with a Haps corer (3), 
from which subsamples were taken out 
with Plexiglas cylinders (inside diameter, 
46 mm). Only cores for which there was 
no resuspension of the sediment material 
during the sampling procedure were used 
in the analysis. Oxygen profiles and the 
oxygen consumption rate of the sedi- 
ment were determined while the cores 
were protected from light, immediately 
after sampling. The oxygen profiles were 
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measured with the oxygen micro- 
electrode of Baumgartl and Lubbers (4), 
which has a tip diameter of 2 to 8 ,m and 
therefore creates almost no physical or 
chemical distortion when it is inserted in- 
to the sediment. [The use of oxygen mi- 
croelectrodes in sediments is described 
in (2).] The electrodes were introduced 
stepwise into the sediment from above 
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with the aid of a micromanipulator, and 
the oxygen concentrations read at 0.5- or 
1.0-mm intervals. The water above the 
sediment was stirred and kept saturated 
with air by bubbling. The oxygen con- 
sumption per unit area was calculated 
from the rate of decrease in oxygen con- 
centration of the water above the sedi- 
ment, as measured in stoppered sedi- 
ment cores. Mean values of five cores 
with gently stirred water and five cores 
with no stirring were used (5). The poros- 
ity of the sediment (b) was determined 
as the weight loss of a known volume of 
surface sediment (0 to 1 cm) after drying 
at 105?C for 24 hours. 

The oxygen concentration in the pore 
water, Cx, at depth x may be calculated 
from (6): 

= R [ -2(2DCo) /2 2DCo 

(1) 
where R is the oxygen uptake rate per 
unit volume of pore water, D is the dif- 
fusion coefficient of oxygen in the sedi- 
ment, and Co is the oxygen concentration 
at the sediment surface. Equation I is 
valid only if the rate of oxygen consump- 
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Fig. 1. Oxygen and oxidation-reduction profiles from two different sediments. (a) Oxygen pro- 
file showing the normal, nearly parabolic shape predicted by Eq. 1. (b) Sigmoidal oxygen pro- 
file, indicating turbulent oxygen transport in the upper 1 mm. (c) Oxidation-reduction profile 
from the same locality as (a). (d) Oxidation-reduction profile from the same locality as (b). A 
platinum electrode was used for the oxidation-reduction measurements (15). At both localities, 
the oxidized sediment layer having a positive oxidation-reduction potential was much thicker 
than the oxic layer. 
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Oxygen in the Sea Bottom Measured with a Microelectrode 

Abstract. The depth of penetration of oxygen into coastal marine sediments (water 
depth, 4 to 44 meters; 6? to 10?C) varied from I to 5.5 millimeters, as measured with 
membrane-covered oxygen microelectrodes. Below these upper few millimeters, oxy- 
gen was present only in the immediate vicinity of animal burrows. The depth of oxy- 
gen penetration is related to the rate at which oxygen is consumed in the sediment. 
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