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tuaries. 

Estuaries are characterized on the 
basis of their morphometry and salinity 
structure (1). For example, Pritchard (2) 
has conceptually modeled estuarine 
types according to three different den- 
sity-stratification and circulation pat- 
terns: highly stratified (type A), moder- 
ately stratified (type B), and vertically 
homogeneous (type C). In contrast to 
highly stratified estuaries, vertically ho- 
mogeneous ones are expected to be shal- 
low, wide, and dominated by tidal cur- 
rents rather than freshwater input (3). 
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The Chesapeake Bay and its tributaries 
have been considered classical examples 
of moderately stratified estuaries. In- 
deed, when this system is viewed in the 
long-term average sense (that is, month 
to month), its salt distribution is well ex- 
plained by such a model. 

Recently, Haas (4) discovered that at 
least portions of the Chesapeake estua- 
rine system alternate between vertical 
homogeneity and stratification within a 
time scale of days. Such a short time 
scale is an appropriate one for those 
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seeking a relationship between biological 
or chemical processes and estuarine hy- 
drography. Haas's analysis of the ob- 
served oscillation cycle of the York, 
James, and Rappahannock rivers re- 
vealed a strong positive correlation be- 
tween destratification events and spring 
tidal height; thus these destratification 
events are predictable. Destratification 
at the mouth of the York River was most 
intense about 4 days after maximum 
spring high tides, and stratification was 
most evident during neap tidal periods. 
Surprisingly, neither short-term varia- 
tion in freshwater flow nor meteorologi- 
cal events had much bearing on the oc- 
currence of vertical mixing. 

This report concerns the effects and 
implications of spring tidal destratifica- 
tion phenomenon on nutrient and O dis- 
tributions in the York River during Au- 
gust 1978 (5). 

We conducted intensive sampling of 
the water column during periods of neap 
tidal stratification (7 to 17 August), 
spring tidal destratification (21 to 24 Au- 
gust), and subsequent neap tidal restrati- 
fication (24 to 31 August). Vertical pro- 
files for NO2-, NH4+, P043-, and O 
strongly reflected the stratification state 
of the estuary (Fig. 1), which was pri- 
marily due to the salinity and not the 
temperature component of density (sig- 
ma t). During the first stratification peri- 
od, O and NO2- concentrations were 
high above the halocline and low below it 
(Fig. 1, B and D) whereas the reverse 
was true for NH4+ (Fig. 1E) and P043- 

(Fig. 1C) (6). The destratification event, 
characterized by a virtually uniform dis- 
tribution with depth of all constituents 
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Table 1. Mean water column concentrations (? standard deviation) for hydrocasts at the mouth of the York River for the range of days in August 
1978; AX is the salinity difference between top and bottom; EN is the sum of NO2-, NO3-, and NH4+. The N and P concentrations are in 
microgram atoms per liter. The numbers in parentheses indicate the number of hydrocasts averaged. 

Date AX (per mil) X (per mil) X IN X P43- X NO2- + NO- X NH4+ 

7to 17 3.94 + 1.10(13) 21.3 ? 0.33 (13) 9.85 ? 2.50 (11) 0.39 + 0.11(10) 3.17 ? 1.27 (11) 6.68 ? 1.36 (11) 
21 to 24 0.15 + 0.39 (10) 20.4 ? 0.24 (10) 3.00 ? 0.81 (10) 0.27 ? 0.08( 9) 1.40 ? 0.61 (10) 1.50 ? 0.51 (10) 
24 to 31 5.43 ? 1.51 ( 9) 22.9 ? 1.88 ( 9) 8.30 ? 2.14 ( 9) 0.80 ? 0.46( 8) 1.12 ? 0.77 ( 9) 7.18 ? 2.54 ( 9) 
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Fig. 1. Profiles of (A) sigma t, (B) oxygen, (C) phosphate, (D) nitrite, and (E) ammonia for 10 August (.....), 23 August ( ), and 29 August 
(------). Profile depths vary slightly because of tidal fluctuation and slight positional changes of the vessel. 
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Nutrient and Oxygen Redistribution During a 

Spring Neap Tidal Cycle in a Temperature Estuary 
Abstract. Spring tidal currents produce homogeneous water columns in a number 

of estuaries that are moderately stratified during neap tides. In the York River es- 
tuary, this destratification redistributes ammonium and phosphate regenerated by 
the benthos as well as oxygen from the surface. This redistribution has significant 
implications for nutrient cycles, organism distributions, and the management of es- 
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Fig. 2. (A) Sum of the inorganic nitrogen 
(NO3-, NO2-, and NH4+) concentrations as a 
linear function (y = ax + b) of the O concen- 
tration for all samples below 14 m [N = 125, 
r2 = 0.771 (r is the correlation coefficient), 
a = -0.0543, b = 18.3] by least-squares fit. 
(B) Phosphate concentration as a linear func- 
tion of the O concentrations for all samples 
below 14 m (for O concentrations below 125 
,g-atom per liter, a = -0.0135; for O con- 
centrations about 125 Ag-atom per liter, 
-0.00115) fitted by eye. 

measured, oxygenated the deep waters 
(Fig. IB) and was followed by a period of 
stratification exhibiting the characteris- 
tics of the earlier one, except that the 
NO2- concentration was low in the sur- 
face layer (Fig. 1D); NO3- was virtually 
undetectable at all times (7). 

Destratification was associated with a 
vertical redistribution of nutrients and O 
in the water column. The total amounts 
of most constituents were less during 
destratification than before or after 
(Table 1). Since inorganic N and P did 
not change in proportion to changes in 
total salinity, we assume dilution did not 
cause the disappearance of the nutrients. 
We are uncertain how to explain this; we 
speculate that the forms we measured 
were converted into other forms (for ex- 
ample, particulate N and P, N2O, or N2) 
which we did not measure, and that the 
mixing of water from above and below 
the pycnocline contributed to biological 
transformations. We conclude that dur- 
ing stratified periods benthic fluxes were 
the dominant factors resulting in nutrient 
and O changes observed in the water col- 
umn below the pycnocline. We base this 
conclusion on the steep concentration 
gradients of NH4+, PO43-, and O detect- 
ed near the benthos during restratifica- 
tion. 

Apparent nutrient regeneration rela- 
tive to O utilization has been estimated 
by techniques comparable to those used 
by oceanographers to measure "appar- 
ent oxygen utilization" (8). Linear re- 
gression of NH4+ versus O concentra- 
tions from below the pycnocline re- 
vealed a strong negative correlation (Fig. 
2A). The regression coefficient, - .054 
(+ .00267 standard error), is close to the 
Redfield ratio of - 0.058 N/O from the 
oxidation of biogenic particulate material 
(9). Simple linear regression was not the 
best treatment for the comparable P and 
O data; these data are better described 
by a biphasic linear relationship having 
an inflection point at about 125 ,g-atom 
of O per liter (2 mg/liter). Below that O 
concentration, linear regression yielded 
a P/O ratio of - 0.0135, and above it the 
P/O ratio was - 0.00115 (Fig. 2B). This 
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Inhibition of Cellular Proliferation of Imaginal Epidermal 
Cells by Diflubenzuron in Pupae of the Stable Fly 

Abstract. A second mode of action has been found for the inhibition of chitin 
synthesis by diflubenzuron. This compound blocks synthesis of the imaginal cuticle 
by preventing formation of the adult epidermis in the pupal stage of the stable fly 
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One means of designing methods of in- 
sect control is to exploit the basic physi- 
ological and morphological differences 
between vertebrates and invertebrates. 
One of the basic differences is that verte- 
brates do not synthesize chitin, a com- 
pound found in some invertebrate phyla 
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and a major component of insect cuticle. 
On the basis of this difference, a new 
class of insecticides that inhibits chitin 
synthesis appears promising. One of 
these insecticides, diflubenzuron [Dimi- 
lin; l-(4-chlorophenyl)-3-(2,6-difluorben- 
zoyl)urea], prevents synthesis of chitin 
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in both larval and adult insects (1-3). 
Since many of these studies were made 
on species of insects in which the larval 
epidermis persists throughout the life 
cycle, we undertook to determine the ef- 
fect of diflubenzuron on chitin synthesis 
during the pupal stage of the stable fly 
(Stomoxys calcitrans L.). During this 
stage, the larval epidermis degenerates 
and is replaced by an imaginal (adult) 
epidermis, which then proceeds to syn- 
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Fig. 1. (a) Transverse section through the integument of a white prepupal larva of S. calcitrans, the stage at which the various treatments were 
begun. The large squamous larval epidermal cells (LE) are still closely opposed to the thick larval cuticle that forms the puparium (C). Apolysis 
has not yet occurred nor has a pupal cuticle been secreted at this time (M, muscle). (b) Transverse section through epidermis of untreated 
pupa 24 hours after prepupal formation. The larval epidermis has been replaced by columnar, imaginal epidermal cells (IE) which is now overlain 
by the pupal cuticle (PC) formed by the larval epidermis. (c) Epidermis of a pupa 24 hours after treatment with acetone. The larval epidermis has 
been histolyzed and the imaginal epidermis has been formed (Ph, phagocyte). (d) Epidermis of a pupa 48 hours after treatment with acetone. The 
imaginal epidermal cells have lost their columnar appearance and have formed the cuboidal, monolayered adult epidermis. (e) Epidermis of a 
pupa 24 hours after treatment with diflubenzuron. The larval epidermis is still present. The pupal cuticle produced by these cells covers their 
apical surface. (f) Epidermis of a pupa 48 hours after treatment with diflubenzuron. No imaginal epidermis has formed. Histolysis of the larval 
epidermal cells has begun, resulting in loss of a large portion of the cytoplasm of these cells (P, puparium). 
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