
3). Others have concluded that whereas 
spontaneous blinks are highly variable 
and sometimes incomplete (11), they do 
not differ objectively from voluntary 
blinks (2). Our own preliminary observa- 
tions confirm this conclusion (12) and 
support the extension of our findings to 
spontaneous blinks. Of still greater im- 
portance is the fact that we have already 
verified (3, 7) that voluntary blinks, like 
spontaneous ones, cause subjective in- 
terruptions of the visual scene that are 
much smaller than objective measure- 
ments would predict. 

We conclude that the decrease in visu- 
al sensitivity that we measured cannot be 
attributed to optical factors. We attribute 
this decrease to a neural inhibitory 
mechanism in the brain. This mecha- 
nism, by decreasing the perceptual effect 
of the blink, contributes to the continuity 
of vision. 
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Nutritional deprivation during critical 
periods of development in early life has 
profound and persistent effects on the 
body and brain (1). The fact that the 
growth impairment of the brain is smaller 
than that of the body as a whole has led 
to the concept of brain "sparing" (2). 
We have studied the mechanisms by 
which the brain is spared by measuring 
the transport of two amino acids, tyro- 
sine and lysine, into brain and skeletal 
muscle and their incorporation into tis- 
sue protein. Both activities were sharply 
reduced in skeletal muscle of under- 
nourished animals. In brain, the reduc- 
tion of amino acid transport was about 
half that seen in muscle, yet the reduc- 
tion in incorporation into brain protein 
was not statistically significant. 

Female sperm-positive rats (3) were 
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caged individually and housed in a tem- 
perature-controlled room with a 12 hour 
light and 12 hour dark (0900 to 2100 
hours) diurnal cycle. The animals were 
fed a normal protein diet containing 25 
percent casein (4) throughout gestation. 
At birth, litter size was made uniform by 
randomly distributing the rat pups 
among the lactating females, eight per lit- 
ter. During lactation, experimental 
mothers were fed a low protein diet con- 
taining 12 percent casein (4), whereas 
control mothers continued on the 25 per- 
cent casein diet. The low protein intake 
reduces the volume of milk without alter- 
ing its composition (5). Thus, throughout 
lactation the experimental pups were 
subjected to undernutrition by receiving 
suboptimal amounts of a diet of normal 
composition; during the third week of 

caged individually and housed in a tem- 
perature-controlled room with a 12 hour 
light and 12 hour dark (0900 to 2100 
hours) diurnal cycle. The animals were 
fed a normal protein diet containing 25 
percent casein (4) throughout gestation. 
At birth, litter size was made uniform by 
randomly distributing the rat pups 
among the lactating females, eight per lit- 
ter. During lactation, experimental 
mothers were fed a low protein diet con- 
taining 12 percent casein (4), whereas 
control mothers continued on the 25 per- 
cent casein diet. The low protein intake 
reduces the volume of milk without alter- 
ing its composition (5). Thus, throughout 
lactation the experimental pups were 
subjected to undernutrition by receiving 
suboptimal amounts of a diet of normal 
composition; during the third week of 

Table 1. Body and brain weights of control and undernourished rats. The data are expressed as 
means ? standard error (N = 30). 

Weight (g) Percentage 
Tissue 

Control Experimental decrease 

Body 60.6 ? 1.13 30.4 ? 0.93 49.8 
Whole brain 1.438 + 0.0166 1.267 ? 0.0117 11.9 
Forebrain 1.128 ? 0.0121 1.009 ? 0.0105 10.5 
Brainstem 0.128 + 0.0049 0.115 + 0.0030 10.3 
Cerebellum 0.181 + 0.0053 0.142 ? 0.0042 21.5 

*P < .001, one-tailed t-test. 
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Sparing of the Brain in Neonatal Undernutrition: Amino 

Acid Transport and Incorporation into Brain and Muscle 

Abstract. Rates of tyrosine and lysine transport and incorporation into protein 
were measured in control and undernourished weanling rats. Undernutrition was 
induced by feeding lactating dams a low protein diet (12 percent casein) from birth to 
day 21. At weaning, body and brain weights of undernourished rats were 50 percent 
and 88 percent, respectively, of control values. Lysine and tyrosine transport rates 
into skeletal muscle were reduced by over 75 percent, more than twice the reduction 
seen in brain. Rates of amino acid incorporation into muscle protein were reduced by 
approximately 50 percent; the change in rate of incorporation into brain protein was 
not statistically significant. These data indicate that, in spite of marked retardation 
of amino acid transport into brain, the brain seems fully capable of maintaining 
normal rates of protein synthesis. 
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life they were also subjected to malnutri- 
tion as they began to feed on the low pro- 
tein and high carbohydrate diet supplied 
to the mother. This combination of un- 
dernutrition and malnutrition closely ap- 
proximates the marasmus form of pro- 
tein-calorie malnutrition seen in the hu- 
man (6). At weaning, on day 21, rates of 

tyrosine and lysine transport into brain 
and skeletal muscle and rates of incorpo- 
ration into protein were assessed by a 

procedure that provides a reliable index 
of the rates of amino acid transport and 

protein synthesis in vivo (7). 
At weaning, the undernourished rats 

exhibited marked retardation in overall 
body growth (50 percent deficit in body 
weight) and a far smaller reduction in to- 
tal brain weight (12 percent) (Table 1). 
These observations are consistent with 
the concept that the central nervous sys- 
tem is relatively spared from gross nutri- 
tional insult. 

The transport rates of both tyrosine 
and lysine into skeletal muscle were re- 
duced by 75 percent (Table 2). The mag- 
nitude of the transport reduction into 
brain was about half that in muscle. 
These data suggest that compensatory 
mechanisms come into play and attenu- 
ate the deficit in amino acid transport in- 
to brain. 

Rates of tyrosine and lysine incorpora- 
tion, an essential feature of tissue 
growth, were measured in both brain and 
skeletal muscle. Undernourished rats ex- 
hibited profound decreases in the rates 
of incorporation of both amino acids into 
muscle protein. In the brain, incorpora- 
tion rates were not significantly reduced 

compared to control animals (Table 2). 
However, small decreases were ob- 
served in all three brain regions studied. 
It is of interest that in both muscle and 
brain the decreased rates of amino acid 
incorporation, an index of protein syn- 
thesis in vivo, paralleled the decrement 
in body and brain weight. Data on the 
concentrations of tyrosine and lysine in 

plasma and brain were consistent with 
these findings: both amino acids were re- 
duced in the plasma but not in the brain 
(8). 

The decreased rate of amino acid 
transport in muscle and brain has not, to 
our knowledge, been reported pre- 
viously in neonatally undernourished an- 
imals. In previous studies (9) of amino 
acid uptake and incorporation in brain 
the results depended on the particular 
amino acid measured. Our data seem to 
represent a phenomenon of general sig- 
nificance because the two amino acids 
that we studied (tyrosine, a large neutral, 
and lysine, a basic amino acid) are car- 
ried by separate systems (10) but were 
similarly influenced. In addition, re- 
duced rates of transport were observed 
both in the brain and in muscle. The de- 
crease in amino acid incorporation into 
skeletal muscle protein could account for 
the observed retardation in body growth; 
thus, the impairment of protein synthesis 
is probably secondary to reduction in 
transport and availability of amino acids. 
Adequate supplies of essential amino 
acids have indeed been shown to control 
the overall rate of tissue protein syn- 
thesis (11). However, compared to the 
decrease in muscle protein, the brain ex- 

hibited a far smaller decrease in weight 
and amino acid incorporation in spite of 
the large reduction in amino acid trans- 
port. 

This sparing effect on the brain may 
reflect an adaptive mechanism that, in 
the case of tyrosine and lysine incorpora- 
tion into protein, involves more efficient 
utilization of amino acids. Reduced 
amino acid efflux from the brain may be 
one of the compensatory processes that 
helps to maintain adequate concentra- 
tions of cerebral amino acids. This con- 
cept is supported by the evidence that, 
especially with respect to tyrosine, brain 
concentrations are unchanged or even 
increased in undernourished rats where- 
as the concentrations in plasma and pe- 
ripheral tissues are markedly decreased 
(12). Developmental patterns of cerebral 
amino acid metabolism are also altered 
by undernutrition (13). Thus, alternative 
factors that could account for the lack of 
a significant decrease in the rate of amino 
acid incorporation into brain protein are 
adaptive changes in amino acid metabo- 
lism or protein synthesis or protein deg- 
radation. 

Although the brain seems to be spared 
from gross deficits in rate of growth and 
amino acid incorporation, other func- 
tionally important amino acid pathways 
do exhibit alterations related to the avail- 
ability of normal supplies of amino acids. 
This is especially evident with respect to 
the utilization of the amino acids tyro- 
sine and tryptophan as precursors of the 
monoamine neurotransmitters. Under- 
nourished animals exhibit altered levels 
of norepinephrine and serotonin, in- 

Table 2. Rates of transport and incorporation into protein of tyrosine and lysine in normal and undernourished rats. The rats (21 days old; 30 
control, 30 undernourished) were injected subcutaneously with a mixture of [14C]lysine (285 mCi/mmole) and [3H]tyrosine (52.1 Ci/mmole) at a 
dose of 30.3 and 303.0 /Ci/kg, respectively. They were killed by decapitation 2.5, 5.0, 7.5, 10.0, or 12.5 minutes after injection and their brains 
were removed and dissected into forebrain, brainstem, and cerebellum. Skeletal muscle samples were from the hind limbs. All tissues were stored 
at -70?C until processed. Total plasma radioactivities were determined by liquid scintillation spectrometry, with the external standard method 
being used for quench correction. The identity of the radioactive amino acid in plasma was confirmed by thin-layer chromatography (18). Free 
amino acids in the brain were extracted in ethanolic trichloroacetic acid (TCA) (7). Skeletal muscle samples were solubilized in 1N NaOH prior to 
ethanolic TCA extraction. Radioactivity in soluble and insoluble fractions of brain and muscle was measured. Transport and incorporation rates 
are expressed as nanomoles per gram (fresh weight) per minute (+ standard error). 

Tyrosine Lysine 

Tissue Percentage Conrol Perentage 
Control Experimental ecrea Control Experimental ecrea 

Amino acid transport 
Skeletalmuscle 5.62 ? 0.779 1.48 ? 1.260* 73.7 50.3 ? 3.00 12.1+ 1.89t 76.0 
Whole brain 6.90 ? 0.595 3.99 ? 0.856t 42.2 19.4 + 2.13 10.1 + 1.57? 47.9 
Forebrain 6.83 + 0.578 3.98 + 0.766t 41.7 17.7 + 2.29 7.95 ? 0.376t 55.1 
Brainstem 6.59 + 0.585 3.72 ? 1.10t 43.5 28.4 + 2.75 20.5 + 2.87t 27.8 
Cerebellum 7.26 ? 0.538 4.54 ? 1.04t 37.5 24.2 + 2.18 16.0 + 2.52t 33.9 

Amino acid incorporation 
Skeletalmuscle 1.11 + 0.152 0.57 + 0.158t 49.2 6.29 + 1.690 2.12 + 0.309t 66.3 
Whole brain 1.42 ? 0.091 1.25 + 0.065 12.0 3.50 ? 0.489 2.93 + 0.317 16.3 
Forebrain 1.29 ? 0.939 1.11 + 0.071 16.0 3.05 + 0.551 2.55 + 0.167 16.4 
Brainstem 2.08 ? 0.116 1.96 ? 0.073 5.8 5.70 ? 0.523 5.10 + 0.164 10.5 
Cerebellum 1.75 ? 0.138 1.65 ? 0.133 5.7 4.63 + 0.824 3.75 ? 0.328 19.0 

*P < .02. tP < .005. tP < .05. ?P < .01, one-tailed t-test. 
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creased tyrosine hydroxylase activity, 
and decreased norepinephrine turnover 
(14). 

At weaning, a time when amino acid 
transport into brain is reduced, we have 
observed alterations in serotonin recep- 
tor binding (15) and in tyrosine hydroxy- 
lase activity in norepinephrine and dopa- 
mine areas of the brain (16). Thus, the 
sparing of the brain in undernutrition 
does not extend to all aspects of amino 
acid metabolism. 

The biochemical changes that we ob- 
served in undernourished rats may repre- 
sent important processes underlying the 
aberrations in brain function and behav- 
ior seen in adult animals and humans ex- 
posed to malnutrition early in life (17). 
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this regard, it has recently been reported 
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are replaced by increased social behav- 
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These results suggest that enhanced re- 
sponsiveness to amphetamine may not 
be implicated in amphetamine psychosis. 
Therefore, we have extended our pre- 
vious studies by characterizing the 
changes in behavior and in monoamine 
systems that occur with multiple daily in- 

jections of amphetamine in rats. 
Male Wistar rats (325 to 375 g), ob- 

tained from Hilltop Laboratories, were 
housed individually in sound-attentuat- 
ing activity chambers for 2 days before 

receiving 30 successive, subcutaneous 
injections of either saline or d-ampheta- 
mine sulfate (2.5 mg of free base per kilo- 

gram of body weight) at 4-hour intervals 

SCIENCE, VOL. 207, 22 FEBRUARY 1980 

this regard, it has recently been reported 
that after 3 days of continuous ampheta- 
mine infusion in rats, motor stereotypies 
are replaced by increased social behav- 
iors, such as fleeing and fighting (7). 
These results suggest that enhanced re- 
sponsiveness to amphetamine may not 
be implicated in amphetamine psychosis. 
Therefore, we have extended our pre- 
vious studies by characterizing the 
changes in behavior and in monoamine 
systems that occur with multiple daily in- 

jections of amphetamine in rats. 
Male Wistar rats (325 to 375 g), ob- 

tained from Hilltop Laboratories, were 
housed individually in sound-attentuat- 
ing activity chambers for 2 days before 

receiving 30 successive, subcutaneous 
injections of either saline or d-ampheta- 
mine sulfate (2.5 mg of free base per kilo- 

gram of body weight) at 4-hour intervals 

SCIENCE, VOL. 207, 22 FEBRUARY 1980 

Multiple Daily Amphetamine Administration: 

Behavioral and Neurochemical Alterations 

Abstract. In rats, multiple daily amphetamine injections (2.5 milligrams per kilo- 

gram of body weight, injected subcutaneously every 4 hours for 5 days) resulted in a 

progressive augmentation in response, characterized by a more rapid onset and an 
increased magnitude of stereotypy. By contrast, offset times of both the stereotypy 
and the poststereotypy hyperactivity periods were markedly shortened. When the 
animals were retested with the same dose of amphetamine 8 days after the long-term 
treatment was discontinued, the time of offset of the stereotypy and hyperactivity 
phases had recovered to values found with short-term amphetamine treatment, 
whereas the more rapid onset of stereotypy persisted. Brain monoamine and am- 

phetamine concentrations andi tyrosine hydroxylase activity were determined in 

comparably treated rats at times corresponding to the behavioral observations. The 
behavioral data indicate that enhanced responsiveness to amphetamine following its 

repeated administration may contribute to the development of amphetamine psycho- 
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