
more restrictive than those of the other 
(8). Here, too, the favored direction of 

junctional transmission [LRB(Glu)OH] 
was from the B cell to the partner. 

A permeability asymmetry has two 
requisites. There must be a spatial asym- 
metry of channel structure, and this must 
give rise to an asymmetry of interaction 
between permeant and channel (21). The 
asymmetry condition here presumably is 
given by the pairing of unequal pro- 
tochannels. We note in this connection 
that this condition is not met by merely 
pairing two different cell membranes; di- 
rectional permselectivities were not ap- 
parent when we built heterologous junc- 
tions with mammalian cell membranes of 

equal homologous junctional permeabili- 
ty [tested on cell types with channels of 

permeability group II (8)]. As to the na- 
ture of the interaction, our earlier results 
with the homologous junctional Balb/c 
channel, probed with molecules of a 
wider range of sizes and charges (8), lead 
us to believe that it is either electrostatic, 
namely, an interaction with a fixed or in- 
duced charge guarding the channel, or a 
hydrogen bonding with the channel-and 
here one thinks first of the channel 
mouth as the locus of interaction. 

An asymmetrically permeable cell-cell 
channel of the sort we have described 
has interesting physiological potential. If 
it occurs in heterologous junction of or- 
gans or tissues-and heterologous junc- 
tions are abundant-it could set up 
subtle internal boundaries where the 
traffic of certain molecules is effectively 
one-way. Selective boundaries of this 
sort could be important for partitioning 
tissues into cell domains of different 
physiology or different developmental 
fate. There is evidence that some do- 
mains of this kind are coupled by per- 
meable junction (2, 4, 22). Little is 
known about the permeabilities of the 
channels at such boundaries, but it 
would be surprising if they were not 
somehow more limited than within the 
domains. 
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is noticeably darker than when dry. This 
change in reflectance (similar to the more 
familiar darkening of wet asphalt) in- 
creases the color saturation of reflected 
light reaching the observer. Most terres- 
trial insects, however, do not undergo 
this reflectance change, apparently be- 
cause their integuments are not wettable. 
The unwettability of most insect in- 
teguments is caused by an epicuticular 
layer of wax or other hydrophobic mole- 
cules (2) that both protects them from 
desiccation and makes them less subject 
to the surface forces of aqueous media 
which they may contact. 

We were surprised, therefore, to no- 
tice a change in the reflectance of certain 
bark-inhabiting Heteroptera after rain 
(3). The most dramatic cases were exhib- 
ited by Dysodius lunatus Fab. (Ara- 
didae), a common neotropical bark bug, 
and Ceratozygum horridum (Germar) 
(Pentatomidae), a neotropical stinkbug 
(Fig. 1). Experiments with light-colored 

Table 1. Absolute percentage reflectance (R) 
of dry and wet bugs and bark (4) (mean + 
S.D.). The relative change in the average re- 
flectance, (Rdry - Rwet)/Rdry, is a more mean- 
ingful measure considering the logarithmic re- 
sponses of visual systems. 

Bark Bugs 
State Cecropia 

sp.* D. luna- C, horri- 
(%) tust (%) dumt (%) 

Absolute reflectance 
Dry 13.7 + 3.2 11.5 + 2.3 13.7 + 7.8 
Wet 8.1 + 2.7 7.9 + 1.5 6.7 + 2.6 

Relative change in average reflectance 
41 31 51 

*N = 20. tN = 10. 

living individuals touched to water dem- 
onstrated a sudden drop in relative re- 
flectance of as much as 62 percent (Table 
1) (4), as a film of water raced across the 
surface of the integument. Individuals 
contacting raindrops (5) or water stream- 
ing down tree trunks darken immediate- 

ly. The change is fully reversible: upon 
drying, individuals of both species return 
to their lighter coloration. 

No wettability differences were found 
between living and dead bugs, indicating 
that the property is one of the in- 
tegument itself, not the living insect. It is 
not clear to what extent wettability is 
due to a hydrophilic surface, capillarity 
of ultrastructural sculpturing, setae and 
scales, or a combination of the two, but 
the effect is analogous to the converse 
situation in many aquatic insects, in 
which a thin film of air is held under wa- 
ter by the integument surface (6). 

Dysodius and Ceratozygum differ from 
one another in the extent of the reflect- 
ance change. In Dysodius, the entire dor- 
sal surface darkens upon wetting. The 
dorsal body surface of Ceratozygum is 
covered with minute white and ochre 
scales; when wet, these are optically 
"cleared" and the integument beneath 
shows through. Since the scales and the 
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Fig. 1. (A and B) Dysodius lunatus, dorsal (A) and lateral (B) views (scale, 3 mm). (C and D) Pair of one wet and one dry Dysodius on dry (C) and 
wet (D) bark of Cecropia sp. The dry individual is inconspicuous on dry bark but easily discernible on wet; the wet bug is better camouflaged on 
wet bark than on dry. (E and F) Ceratozygum horridum, dorsal (E) and lateral (F) views (scale, 3 mm). (G and H) Dry (G) and wet (H) Ceratozygum, 
both on dry bark of Cecropia. There is a difference in pattern (especially on the pronotal lobes) as well as a change in reflectance. 
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integument are similar in color in some 
areas, but not in others, wetting changes 
not only the overall reflectance of the in- 
sect but its pattern as well (Fig. 1, G and 
H). 

The ability to change reflectance in 
parallel with their substrate probably 
protects these bugs from visually orient- 
ed predators. Many bark-living Heterop- 
tera, especially Aradidae, are slow-mov- 
ing. When feeding, they cannot move to 
escape potential predators until their 
elongate mouthparts are extricated from 
the wood. Camouflage, aided by their 
coloration, often flattened shapes, and 
quiescent behavior, plus exocrine glands 
in some species, are their main lines of 
defense (7, 8). Wetting and darkening of 
tree trunks by rain would destroy the 
protective value of the insects' color- 
ation. In these two species, effective 
camouflage is maintained in spite of such 
changes in background reflectance, sim- 
ply by being wettable (9). 
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and Ceratozygum have enlarged pronotal lobes 
(and, in Ceratozygum, elongate cephalic horns) 
that are usually the first parts of the body to en- 
ter water droplets. 
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(1953); Proc. S. London Entomol. Nat. Hist. 
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7. Many bark-inhabiting Heteroptera (including 
some Aradidae) affix particles of bark or soil to 
the dorsal surfaces of their bodies, gaining both 
visual camouflage and the physical properties of 
their coverings, including wettability. 

8. R. L. Usinger and R. Matsuda, Classification of 
the Aradidae (Hemiptera-Heteroptera) [British 
Museum (Natural History), London, 1959], pp. 
35-39. (Plate IV shows a dry D. lunatus on dry 
bark.) 

9. Other methods of reversible color change in in- 
sects are reported or reviewed by H. E. Hinton, 
in The Insect Integument, H. R. Hepburn, Ed. 
(Elsevier, Amsterdam, 1976), p. 475; Sci. Prog. 
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Tropical Research Institute for support and use 
of facilities. 

integument are similar in color in some 
areas, but not in others, wetting changes 
not only the overall reflectance of the in- 
sect but its pattern as well (Fig. 1, G and 
H). 

The ability to change reflectance in 
parallel with their substrate probably 
protects these bugs from visually orient- 
ed predators. Many bark-living Heterop- 
tera, especially Aradidae, are slow-mov- 
ing. When feeding, they cannot move to 
escape potential predators until their 
elongate mouthparts are extricated from 
the wood. Camouflage, aided by their 
coloration, often flattened shapes, and 
quiescent behavior, plus exocrine glands 
in some species, are their main lines of 
defense (7, 8). Wetting and darkening of 
tree trunks by rain would destroy the 
protective value of the insects' color- 
ation. In these two species, effective 
camouflage is maintained in spite of such 
changes in background reflectance, sim- 
ply by being wettable (9). 
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The Heart Is a Target Organ for Androgen 

Abstract. Autoradiographic and biochemical analyses of the hearts of female 
rhesus monkeys and baboons indicate that atrial and ventricular myocardial cells 
contain androgen receptors. Although the specific effects of nuclear uptake and re- 
tention of androgen on the function of heart muscle cells are not known, the presence 
of this receptor suggests that sex steroid hormones may affect myocardial function 
directly and may explain some of the peculiar differences in heart disease between 
men and women. 
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Among the most puzzling features of 
coronary heart disease are the dif- 
ferences in morbidity and mortality from 
this disease in men and women. White 
men have more severe coronary artery 
atherosclerosis and more frequently ex- 
perience myocardial infarction and sud- 
den death than do white women. On the 
other hand, there is greater incidence of 
angina pectoris among women. These 
differences are not as great in nonwhite 
persons. There is little or no sex dif- 
ferential in other forms of arteriosclerot- 
ic heart disease. 

In attempting to explain these re- 
lationships, emphasis has been placed 
on the possibility of a protective role 
of estrogen in reducing risk of arte- 
riosclerotic disease, particularly through 
an effect on serum lipoproteins. How- 
ever, the administration of estrogens to 
men who have experienced one myo- 
cardial infarct is accompanied by in- 
creased mortality; and the oral con- 
traceptives, which have estrogenic activ- 
ity, increase the risk of myocardial 
infarction in women, particularly in 
those who also smoke (1). 

The observation that atrial, but not 
ventricular, myocardial cells possess 
specific estrogen receptors (2) indicates 
that the atrium may be affected directly 
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by circulating estrogenic hormones. We 
now have demonstrated androgen recep- 
tors in both atrial and ventricular myo- 
cardial cells of two species of nonhuman 
primates by both autoradiography and 
biochemical analyses, an observation 
suggesting that androgens also may af- 
fect cardiac function directly. 

For these experiments we used six 
adult, normally cycling female rhesus 
monkeys (Macaca mulata) and baboons 
(Papio cynocephalus), three of each spe- 
cies. One animal of each set of three was 
a control. On day 1 of the experiment we 
removed both ovaries and the right adre- 
nal gland from each animal. On day 3 we 
removed the left adrenal gland. At this 
second operation, the test animals re- 
ceived 100 mg of hydrocortisone. On day 
4, we injected intravenously into the test 
animals 1 ug of 5a-dihydro[l, 2, 4, 5, 6, 
7-3H]testosterone ([3H]DHT) (101 Ci/ 
mmole) per kilogram of body weight. We 
injected the two control animals with the 
labeled material together with 100 ptg 
of unlabeled hormone per kilogram of 
body weight. One hour later, we exsan- 
guinated each animal rapidly and per- 
fused the vascular system with chilled 
Ringer solution. Tissue samples were 
mounted on tissue holders, frozen in li- 
quefied propane, and stored in liquid ni- 

Fig. 1. Autoradio- 
graphs of baboon 
heart muscle. (A) Sec- 
tion from animal in- 
jected with [3H]DHT 
shows scattered silver 
grains due to free or 
bound steroid, with a 
marked concentration 
of grains over a nucle- 
us of a myocardial 
fiber. Lighter gray 
granules adjacent to 
the nucleus are parts 
of sarcoplasm, not sil- 
ver grains. (B) Sec- 
tion from a control 
animal injected with 
[3H]DHT and unla- 
beled DHT shows no 
nuclear localization of 
silver grains, and thus 
demonstrates satu- 
rability of binding by 
competition. 

by circulating estrogenic hormones. We 
now have demonstrated androgen recep- 
tors in both atrial and ventricular myo- 
cardial cells of two species of nonhuman 
primates by both autoradiography and 
biochemical analyses, an observation 
suggesting that androgens also may af- 
fect cardiac function directly. 

For these experiments we used six 
adult, normally cycling female rhesus 
monkeys (Macaca mulata) and baboons 
(Papio cynocephalus), three of each spe- 
cies. One animal of each set of three was 
a control. On day 1 of the experiment we 
removed both ovaries and the right adre- 
nal gland from each animal. On day 3 we 
removed the left adrenal gland. At this 
second operation, the test animals re- 
ceived 100 mg of hydrocortisone. On day 
4, we injected intravenously into the test 
animals 1 ug of 5a-dihydro[l, 2, 4, 5, 6, 
7-3H]testosterone ([3H]DHT) (101 Ci/ 
mmole) per kilogram of body weight. We 
injected the two control animals with the 
labeled material together with 100 ptg 
of unlabeled hormone per kilogram of 
body weight. One hour later, we exsan- 
guinated each animal rapidly and per- 
fused the vascular system with chilled 
Ringer solution. Tissue samples were 
mounted on tissue holders, frozen in li- 
quefied propane, and stored in liquid ni- 

Fig. 1. Autoradio- 
graphs of baboon 
heart muscle. (A) Sec- 
tion from animal in- 
jected with [3H]DHT 
shows scattered silver 
grains due to free or 
bound steroid, with a 
marked concentration 
of grains over a nucle- 
us of a myocardial 
fiber. Lighter gray 
granules adjacent to 
the nucleus are parts 
of sarcoplasm, not sil- 
ver grains. (B) Sec- 
tion from a control 
animal injected with 
[3H]DHT and unla- 
beled DHT shows no 
nuclear localization of 
silver grains, and thus 
demonstrates satu- 
rability of binding by 
competition. 

0036-8075/80/0215-0755$00.50/0 Copyright ? 1980 AAAS 0036-8075/80/0215-0755$00.50/0 Copyright ? 1980 AAAS 
---'----'--'-- -- ---'----'--'-- -- 

775 775 


