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Each year the California gray whale 
Eschrichtius robustus performs the long- 
est migration of any mammal-a round 
trip of between 16,000 and 22,000 km (1, 
2). During the warm months of the 
Northern Hemisphere (late May through 
October), gray whales generally feed on 
the benthos in shallow waters of the Ber- 
ing Sea, the Chukchi Sea, and the west- 
ern Beaufort Sea as far north as the 
southern edge of the close pack ice. Dur- 
ing the cold months, many of the whales 
are found in the warm lagoons and bays 
of Baja California, Mexico. The south- 
ward migration generally lasts from Oc- 
tober through January. The whales swim 
south, roughly following the coastline 
until they reach Baja California. A few 
travel even farther south, and they win- 
ter in protected waters along the Gulf of 
California. 

Deeply embedded in the skin of virtu- 
ally all gray whales is the host-specific 
sessile barnacle Cryptolepas rhachia- 
necti. This barnacle is closely related to 
the genus Coronula (3), which is fre- 
quently found on humpback whales (2, 
4). Although stable isotope studies of 
mollusk shells have been used to ascer- 
tain the range and succession of seasonal 
changes in temperature and physical pro- 
cesses (5), and to relate progressive 
changes in oxygen and carbon stable iso- 
topes of benthopelagic fish otoliths to 
changes in their depth habitats (6), no de- 
tailed isotopic analyses have been per- 
formed on crustacean shells such as 
those of barnacles (Cirrepedia). I show 
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here how temperature-related changes in 
180/160 ratios of the shell of C. rhachia- 
necti can be employed as a tracking de- 
vice to trace the migrations of the host 
animal. 

The first specimen of C. rhachianecti 
that I analyzed was collected from the 
San Ignacio Lagoon, Baja California, 
where gray whales mate and calve. The 
shell (determined by x-ray diffraction 
to be pure calcite) was ultrasonically 
cleaned and treated with sodium hy- 
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Fig. 1. Plan (A) and inside (B) views of half of 
the 28-mm barnacle from the beached whale. 
The inside view shows the sequential growth 
lamellae with the oldest (partly broken) sec- 
tions at the top and the most recent growth 
(irregular toothlike protrusions) at the base. 
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Fig. 1. Plan (A) and inside (B) views of half of 
the 28-mm barnacle from the beached whale. 
The inside view shows the sequential growth 
lamellae with the oldest (partly broken) sec- 
tions at the top and the most recent growth 
(irregular toothlike protrusions) at the base. 

pochlorite. It was then broken in two 
across its diameter, and small samples 
were removed from the sequential 
growth lamellae of the sheath with a den- 
tal drill (0.5-mm diameter). Each sample 
(about 0.5 mg) was heated in a vacuum 
for 30 minutes at 250?C and then ana- 
lyzed isotopically (7); the analytical pre- 
cision was 0.07 per mil. Two other speci- 
mens of C. rhachianecti were treated 
and analyzed in a similar way. These had 
been removed from a small gray whale 
that had beached itself in October 1976 
on Mission Beach, San Diego (8, 9). Fig- 
ure 1 gives a magnified view of one of 
these shells. 

Figure 2 shows the 8180 (10) results for 
samples from the San Ignacio barnacle 
plotted against distance from the base of 
the shell (the terminal edge). There is a 
progressive decrease in 6180 in the direc- 
tion of shell growth, reflecting movement 
of the host animal from cold to warm wa- 
ters. The 8180 values can be used to cal- 
culate the temperature of the water from 
which the calcite precipitated by using 
a paleotemperature equation (11) that 

gives temperature as a function of the 
isotopic composition of the precipitated 
calcite and the isotopic composition of 
the water from which precipitation oc- 
curred. Conversely, expected calcite 
8180 values can be obtained if temper- 
ature and water 6180 values are avail- 
able. Estimates of the isotopic composi- 
tion of the water can be made if the salin- 
ity is known (12). 

From reported average values of salin- 
ity for the Arctic Ocean and the north- 
eastern Pacific (13), I estimated ocean 
water 8180 values and then used the pa- 
leoequation to calculate expected calcite 
6180 values for selected temperatures. 
Temperatures were estimated (14) at six 
points for a model in which a gray whale 
travels from Point Hope, Alaska (start- 
ing 15 October) to San Ignacio Lagoon 
(arriving 23 January, or 100 days later). 
Sequential points A to F (Fig. 2) are sep- 
arated by 20-day intervals and corre- 
spond to expected locations during the 
migration (1). 

Figure 2 shows the calculated 6180 val- 
ues and corresponding temperatures. 
The model migration agrees well with an 
actual migration as interpreted from the 
isotopic values for the barnacle. The av- 
erage vertical growth rate of the C. 
rhachianecti shell during the migration 
south is indicated as 0.12 mm per day, 
and since the whale travels nearly 100 
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Migrations of California Gray Whales Tracked by 

Oxygen-18 Variations in Their Epizoic Barnacles 

Abstract. Barnacles attached to the Califjrnia gray whale have oxygen isotope 
compositions that serve as a record of changing ocean temperatures as the whale 

migrates between arctic and subtropical waters. The isotopic values for the barna- 
cles can be used to track whale migrations and to reconstruct the recent movements 
of beached whales. The method may be useful for tracing the movements of other 
animals, living or fossil, and for reconstructing the voyages of ancient ships. 
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This may explain why the lowest 6180 
value determined for the barnacle was 
not as low as in the model (by about 
2?C). The increase in 8180 at the bottom 
edge of the barnacle can be explained by 
the sharp increase in salinity experi- 
enced by the barnacle after entering the 
San Ignacio Lagoon, which has no fresh- 
water source and can attain salinities 
several parts per thousand higher than 
those of the open ocean (15). 

The sharp change in the C. rhachia- 
necti 8'80 curve between B and C in Fig. 
2 is entirely consistent with the whale's 
having traveled from east of St. Law- 
rence Island in the Bering Sea and then 
followed the coastline before heading 
southwest toward the Unimak Pass. 
During this section of the journey, the 
whale would cross a sharp salinity gradi- 
ent-entering waters near 20 per mil 
from waters of - 31 per mil and then 
recrossing the gradient en route to the 
Unimak Pass. This would be recorded in 
the oxygen isotopic signal as a decrease 
of - 0.7 per mil in 6180, followed by a 
similar increase. 

I conclude that C. rhachianecti re- 
cords in its calcite shell the temperature 
and composition of water through which 
its host swims; hence the isotopic tech- 
nique can be used as an accurate track- 
ing device. As an example of the useful- 
ness of this technique, Fig. 3 shows the 
6880 values obtained on the C. rhachia- 
necti recovered from the whale beached 
in San Diego. Curve I shows the isotopic 
profile of the larger of the two barnacles; 
curve 2, the profile of the second barna- 
cle analyzed in slightly less detail. The 

purpose of analyzing the second speci- 
men was to demonstrate that two dif- 
ferent barnacles attached to the same 
gray whale record similar 6180 signals. 
Curve I is offset to the right of curve 2 by 
about 1.5 mm, presumably because the 
bottom 1.5 mm of the second barnacle 
was missing (it may have broken off dur- 
ing removal from the whale's skin). 

The beached whale was 7.5 m long 
and, therefore, was probably a yearling 
(2). From the isotopic curves shown in 
Fig. 2, it is possible to plausibly recon- 
struct the movements of the whale in the 
last few months of its life. According to 
the reconstruction, the whale was in 
warm southern waters in midsummer 
(assuming a barnacle growth rate similar 
to that of the San Ignacio specimen), 
which suggests that the young whale had 
become lost. Instead of heading north in 
1976 for summer feeding, it swam south 
as far as the Gulf of California, where a 
water temperature of 29?C and a salinity 
of 34.5 per mil are typical in August and 
correspond to the observed -2.9 per mil 
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for 8680. Possibly the long distances 
traveled by the whale without adequate 
nourishment led to its death. 

To improve confidence in this tracking 
technique, it will be necessary to analyze 
isotopically a large number of specimens 
to learn more about the growth rates of 
barnacle shells in various temperature 
and salinity regimes (16). Clearly, useful 
historical information is contained in 
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Fig. 3. Variations in 8180 of a 28-mm diameter 
barnacle (solid line) and a 23-mm diameter 
barnacle (dotted line) from the beached 
whale. 

barnacles; these epizoic irritants have a 
redeeming value if they provide clues 
with which to increase our understand- 
ing of the life cycle of whales and per- 
haps of the reasons for whale mortalities. 
The 180 tracking technique is applicable 
in principle to other species of whales 
and also to turtles, which carry barnacles 
on their shells. It may be possible to re- 
construct the historical movements of 
fossil marine animals or ancient ships 
from the barnacle shells (or other cal- 
careous shells) found in association with 
them. 

J. S. KILLINGLEY 

Scripps Institution of Oceanography, 
La Jolla, California 92093 
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