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Auditory and Vocal Nuclei in the Frog Brain

Concentrate Sex Hormones

Abstract. Mate calling by South African clawed frogs, Xenopus laevis, is under

the control of androgens. Autoradiographic studies demonstrate androgen-con-
centrating neurons in a motor nucleus that controls mate calling and a midbrain
nucleus that is stimulated by sound. Hormone concentration by laryngeal motor neu-
rons suggests that steroids regulate the final common path for vocal behavior. Mod-
ulation of auditory sensitivity by hormories could explain seasonal variations in be-

havioral responsiveness to conspecific vocalizations.

Sex hormones are powerful modula-
tors of reproductive behaviors. Gonad-
ectomy eliminates and steroid hormones
restore sexual responses in most verte-
brates (/). Hormone accumulation by
target cells in specific brain nuclei is be-
“eved to regulate the activity of neural
.ircuits that mediate sexual behaviors.
Most steroid-concentrating cells are
found in the hypothalamus and in-
fundibulum (/). Recent autoradiographic
zvidence has shown that motor neurons
n nuclei of cranial nerves and in the spi-
nal cord concentrate androgen (2—<) and
that some nuclei in the central nervous
system (CNS) that receive sensory infor-
mation are labeled by estrogen (5). I
have been investigating mate calling, an
androgen-dependent male sexual behav-
ior in the South African clawed frog, Xe-
nopus laevis , and now report that a CNS
nucleus that receives auditory informa-
tion and one that controls vocal behavior
contain androgen-concentrating cells.

Male mate calling is stimulated by in-
jection with human chorionic gonadotro-
pin, abolished by castration, and rein-
stated by treatment with the androgens
testosterone or  dihydrotestosterone
(DHT), but not with estradiol (6). Both
DHT and testosterone are present in X.
laevis blood; treatment with chorionic
gonadotropin increases concentrations
of both androgens to five times those
seen in untreated males (7). Since testos-
terone can be metabolized to estradiol by
CNS target cells (8), I investigated
androgen-specific hormone accumula-
tion in the frog brain with the non-
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aromatizable hormone DHT. The gonads
of five adult male X. laevis were re-
moved. One week later, 200 uCi of oc-
talabeled, tritiated DHT (9) was injected
into the dorsal lymph sac; the frogs were
allowed to survive for 2 hours, after

which the brains (3) and spinal cords
were removed, frozen, and processed for
steroid autoradiography. Slides were ex-
posed for 4, 6, or 8 weeks, developed,
lightly stained with cresyl violet acetate,
and microscopically examined for the
presence of labeled cells (/0). The loca-
tions of such cells were plotted on en-
larged microprojector drawings of the
entire section with the aid of an x-y plot-
ter coupled to linear potentiometers on
the microscope stage.

After DHT injection, labeled cells
were found in the anterior pituitary, the
posterior thalamus, the laminar nucleus
of the torus semicircularis, the dorsal
tegmental area of the medulla, the princi-
pal nucleus of cranial nerve V, the motor
nucleus of cranial nerves IX and X (N
I1X-X), the medullary tegmentum, and in
large and small neurons in the ventral
portion of the anterior spinal cord [for
neuroanatomical nomenclature see (3)]
(Fig. 1). Autoradiograms of cells in N
IX-X are shown in Fig. 2, A and B. No
DHT-labeled cells were ever seen in the
anterior preoptic area or the ventral in-
fundibular nucleus, the two regions with
the greatest number of heavily labeled
neurons after injection of tritiated estra-
diol or testosterone (3); this absence sup-
ports the hypothesis that testosterone-la-
beled cells in these nuclei are attribut-
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Fig. 1. (A) A lateral view of the brain and anterior spinal chord of X. laevis. Locations of DHT-
concentrating cells (®) are indicated schematically. (B) A representative horizontal section
through the torus semicircularis. Locations of labeled cells (®) are shown on the left side; major
brain nuclei are identified on the right. The figure represents all labeled cells from one 10-um
autoradiogram projected onto a standard reference section. (C) A representative horizontal
section through the nucleus of cranial nerves IX and X. Abbreviations: A Pit, anterior pituitary;
ApoA, anterior preoptic area; CTor, caudal nucleus of the torus semicircularis; DTAM, dorsal
tegmental area of the medulla; /nf, infundibulum; LTor, laminar nucleus of the torus semi-
circularis; NV, sensory nucleus of the fifth cranial nerve; N IX-X, motor nucleus of the ninth
and tenth cranial nerves; SC, ventral horn of the anterior spinal cord; Tect, optic tectum; Tel,
telencephalon; Th, thalamus; V, fifth cranial nerve; and IX-X, ninth and tenth cranial nerves.
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able to aromatization to estradiol (//,
12).

‘The anatomical location of DHT-la-
beled cells adjacent to cranial nerves IX
and X suggested that these neurons
might be responsible for innervation of
the larynx, the vocal organ of Xenopus,
and thus might play a direct role in mod-
ulating mate calling. The cells of origin of
laryngeal efferents were determined ac-
cording to the method of retrograde
transport of horseradish peroxidase
(HRP) (/3). Male frogs were anesthe-

.l PR R T SRR

tized, and the larynx was exposed. Crys-
talline HRP was inserted into the aryte-
noid dilator or bipennate muscle, which
controls the production of the click, the
basic unit of X. laevis calls (/4). Frogs
were allowed to survive for 1 or 2 days,
anesthetized, and transcardially per-
fused with fixative; the brains were re-
moved and sectioned at 50 pm. Intra-
cellular HRP was visualized by reaction
with tetramethylbenzidine or cobalt-in-
tensified diaminobenzidine and hydrogen
peroxide (/5). All sections were exam-

Fig. 2. (A and B) Photomicrographs of autoradiograms illustrating DHT-concentrating cells in N
IX-X of X. laevis after 6 weeks exposure. Cells are lightly stained with cresyl violet acetate.
Calibration bar, 20 um. (C) Dark-field photomicrograph of HRP-labeled cells in N IX-X after
insertion of enzyme into the ipsilateral bipennate muscles of the larnyx. Intracellular HRP was
visualized by reaction with tetramethylbenzidine and hydrogen peroxide. Calibration bar; 50

um.

Fig. 3. Autoradiograms of horizontal sections through the torus semicircularis of frogs exposed
to “C-labeled 2DG. (A) Intact male frog stimulated with a 2-hour tape of conspecific vocaliza-
tions. Regions of heavy accumulation of radioactivity include the dorsal acoustic medulla
(DAM), the caudal nucleus of the torus semicircularis (CTor), the laminar nucleus of the torus
semicircularis (LTor), and anterior and posterior thalamus (Th). (B) Male frog deafened on one
side and stimulated with a 2-hour tape of conspecific vocalizations. Arrow, reduction of label in
the contralateral LTor. (C) Bilaterally deafened, male frog exposed only to ambient noise.
While CTor and Th are clearly visible, LTor cannot be distinguished (arrows).
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ined microscopically for HRP-labeled
cells (Fig. 2C).

After small amounts of HRP were in-
serted into the muscles of one side of the
larynx, HRP-labeled cells were found
only in N IX-X of the ipsilateral medulla.
This nucleus consists of a rostral divi-
sion, adjacent to cranial nerves IX and
X, and a caudal extension. Cell sizes
range from 15 to 33 um. Both divisions
of N IX-X contained labeled cells after
HRP injection into the larynx, and both
contained 3H-labeled DHT cells in auto-
radiograms. Large injections of HRP in-
to the bipennate muscles labeled approx-
imately 97 percent of the neurons in the
ipsilateral N IX-X. Systemic administra-
tion of hormone labeled approximately
60 percent of N IX-X cells (16). The fig-
ures suggest that some of the neurons in-
nervating the larynx also concentrate
DHT. Thus, behavioral modulation of
mate calling by exogenous DHT or tes-
tosterone may be mediated by direct ef-
fects on the final efferent output of the
vocal pathway, the laryngeal motor neu-
rons. As these cells were also labeled af-
ter injection of tritiated testosterone but
not of tritiated estradiol, cellular accu-
mulation of hormone appears to be selec-
tive for androgen.

The laminar nucleus of the torus semi-
circularis seemed a promising candidate
for a role in the neural processing of
auditory information (/2). Neurophys-
iological studies by Potter (/7) demon-
strated the presence of auditorily respon-
sive units in that nucleus in Rana cates-
beiana. Xenopus laevis both makes and
receives sound while underwater. Under
these conditions, the 2-deoxy-D-glucose
(2DG) autoradiographic technique (/8)
appeared a convenient initial approach
for determining the auditory sensitivity
of the nucleus. Male frogs were injected
with radioactive 2DG and exposed to a 2-
hour tape of conspecific vocalizations or
to ambient noise. The frogs were killed
and their brains removed and sectioned
on a cryostat according to the method of
Sokoloff for *C-labeled 2DG or accord-
ing to a precoated slide method (/9) for
3H-labeled 2DG. After autoradiography,
cryostat sections were Nissl-stained and
brain areas corresponding to regions of
high 2DG uptake identified. For intact
frogs exposed to mate calls, the nucleus
appears as a distinct dark bar, just caudal
to the tectal ventricle (Fig. 3A). Unilater-
al removal of the tympanum and middle
ear bones prior to exposure to taped calls
resulted in a 50 percent decrease in grain
density in the contralateral nucleus com-
pared with the ipsilateral side (Fig. 3B).
When frogs were bilaterally deafened
and exposed to ambient noise, the nucle-
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us could not be distinguished in auto-
radiograms, although the adjacent caudal
nucleus of the torus semicircularis is
clearly visible (Fig. 3C). Thus, the lami-
nar nucleus of the torus semicircularis is
a mesencephalic auditory nucleus that
contains cells that concentrate DHT and
estradiol (3, 20).

To my knowledge this is the first re-
port of steroid-concentrating cells in a
functionally identified vertebrate audi-
tory nucleus. Other stations of the audi-
tory neural pathway in frogs may contain
steroid-sensitive cells as well. With re-
gard to the efferent pathway for vocal
control in frogs, calling behavior is mod-
ulated by the anterior preoptic area, the
ventral infundibulum, and the dorsal teg-
mental area of the medulla 27). As all
these nuclei contain  steroid-con-
centrating cells in X. laevis (3), we
should consider the possibility that all
stations of the neural pathway con-
trolling calling are sensitive to hormones
@). Multiple sites of hormone action on
neural pathways for reproductive behav-
ior may ensure a high frequency of sex-
ual behaviors during the breeding season
and may synchronize the receptivity of
females with the attraction behavior of
males. Such evolutionary specializations
are probably not confined to anurans but
may be present in other vertebrates that
breed seasonally, including birds and
mammals.

DARrcy B. KELLEY
Department of Psychology,
Princeton University,
Princeton, New Jersey 08544
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Spatial Adaptation of Short-Wavelength Pathways in Humans

Abstract. Color-selective spatial adaptation of the short-wavelength, or blue-sen-
sitive, pathway was demonstrated. The adaptation was orientation selective and
strongly monocular. Adaptation was assessed by measuring visibility thresholds for
monochromatic gratings in subjects adapted to high-contrast violet gratings de-
signed to stimulate only blue-sensitive cones. The results showed spatially selective,
adaptable channels within the short-wavelength pathway.

Spatial adaptation has revealed form-
selective mechanisms in human vision.
Prolonged viewing of a grating of stripes
will selectively elevate the contrast
threshold of a test grating of similar ori-
entation (/) and spatial frequency (2, 3).
We present results to show that an
adapting pattern that selectively stimu-
lates the short-wavelength (blue) cones
strongly elevates the threshold only for a
grating test pattern that also selectively
stimulates the same cones.

Previous failures (¢) to find color-se-

A Adaptation
! - Violet, 441.6 nm
9.56 log quanta deg™2 sec~!

Field - Yellow-green, 560 nm
11.40 log quanta deg~2 sec~!
B Test
} 441.6 nm | 9.56 log quanta
- ) 440 nm | deg™2 sec™!
Field -Yellow-green
C Test Red, 632.8 nm
~ ~ - -~~~ Variable radiance
I ﬁ -440 nm
‘ 9.56 log quanta deg 2 sec~!
Field } - Yellow-green

lective spatial adaptation may be ac-
counted for by lack of isolation of the dif-
ferent cone mechanisms. - We - used
Stiles’s (5, 6) two-color methods to sepa-
rately stimulate different spectral classes
of cones. We have investigated the
short-wavelength pathways because the
blue-sensitive cones can be readily iso-
lated and because initial observations
showed that fine spatial patterns seen on-
ly with the blue=sensitive cones rapidly
fade from view and thus might produce
strong spatial adaptation (7).

The observer monocularly fixated in
Maxwellian view an intense, uniform
yellow-green field 4° in diameter and of
560 nm (13-nm bandwidth) and 200,000
trolands or 11.40 log quanta deg™* sec™
8, 9). Red (632.8 nm) or violet (441.6
nm) sinusoidal gratings were superim-
posed over the entire adapting field: The
red and violet patterns selectively stimu-

Fig. 1. Spatial radiance profiles of the sinusoi-
dal violet adapting grating (A) and the violet
(B) and red (C) test gratings. Gratings were
superimposed on an intense, uniform yellow-
green (560-nm) field. The mean spatial radi-
ance of the violet light was kept constant. The
contrast of the violet test grating (B) was var-
ied by changing the ratio of the radiance of
violet grating and violet (440-nm) dilution field
while keeping their sum constant. The radi-
ance of the red test grating (C) was varied.
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