
Neurotrophic Influence on Lobster Skeletal Muscle 

Abstract. The correlation between histochemical properties of muscle fibers and 
the pattern of innervation by the two motor neurons was studied in the asymmetric 
claw closer muscles of the lobster. The closer muscle of the cutter claw is composed 
of 65 percentfast muscle fibers and 35 percent slow musclefibers, whereas that in the 
crusher claw has all slow musclefibers. In both claws, myofibrillar adenosinetriphos- 
phatase activity was independent of the pattern of innervation. Oxidative capacity, 
as measured by reduced nicotinamide adenine dinucleotide activity, was correlated 
with motor axon presence: Muscle fibers innervated solely by the "fast" motor axon 
had low oxidative capacity, muscle fibers receiving only the slow motor axon had 
very high oxidative capacity, and fibers innervated by both axons had intermediate 
properties. The data suggest that the motor neurons may exert trophic influences 
that control certain muscle fiber properties but not others. 

A complex dynamic relationship has 
been established to exist between a neu- 
ron and the structure it innervates, be it 
another neuron, a muscle, or a gland. In 
addition to the well-studied processes 
concerned with generation of post- 
synaptic potentials (PSP's), other more 
subtle "trophic influences" appear to 
control certain postsynaptic properties. 
Indeed, the integrity of the innervated 
structure depends on the presence of 
these trophic influences (1). A clear dem- 
onstration of this dependence can be ob- 
tained when the nerve to a skeletal 
muscle is cut or if function of the nerve is 
otherwise disturbed (2); in either event, 
the muscle will atrophy. Furthermore, 
the motor nerve will influence specific 
properties of vertebrate skeletal muscle; 
if the nerve to a slow muscle is trans- 
planted to a fast muscle, some properties 
of the muscle will transform to those re- 
sembling a slow muscle (3). Although the 
demonstration of these trophic influ- 
ences is clear, their exact nature is as yet 
uncertain (4-6). 

We have been investigating nerve- 
muscle interactions during development 
and growth of the lobster. This system 
provides an opportunity to study fast and 
slow fibers from muscles whose proper- 
ties are not fixed at the time of hatching 
(7). The muscle is innervated by only 
two identifiable motor neurons, so it is 
possible to determine which character- 
istics of the muscle are correlated with 
the pattern of innervation and which are 
apparently independent of this influence. 
We report that the oxidative capacity of 
lobster skeletal muscle is correlated with 
the pattern of innervation by the fast and 
slow motor neurons (8, 9). In contrast, 
specific activity of the myofibrillar aden- 
osinetriphosphatase (10) has no obvi- 
ous correlation with the pattern of in- 
nervation. The results are consistent 
with a hypothesis that the motor neurons 
may exert a trophic influence, perhaps 
chemical in nature or by activity, on 
oxidative metabolism but has little or no 
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influence on sarcomere length or specific 
activity of myofibrillar adenosinetriphos- 
phatase. 

Experiments were performed on lob- 
sters (Homarus americanus) ranging in 
size from 50 to 400 g (11). Most of the 
electrophysiological work was per- 
formed on larger animals, and histologi- 
cal results were obtained from smaller 
animals. Innervation patterns of differ- 

ent-sized animals did not differ. The pri- 
mary objective was to correlate prop- 
erties of muscle fibers, including specific 
activity of myofibrillar adenosinetriphos- 
phatase and oxidative capacity, with the 
pattern of innervation by the motor ax- 
ons. To determine the pattern of in- 
nervation, animals were induced to au- 
totomize a claw. The two motor axons 
(12) were isolated in the carpopodite; 
motor axon action potentials were mon- 
itored with a suction electrode, and in- 
tracellular recordings were made from 
individual muscle fibers of the closer 
muscle according to conventional tech- 
niques (13). Careful placement of the 
stimulating electrodes permitted selec- 
tive excitation of either motor axon 
alone. By removing pieces of exo- 
skeleton from the propus and monitoring 
electrical activity in the underlying fi- 
bers, we were able to determine the dis- 
tribution of the motor axons to all areas 
(deep and superficial) of the closer mus- 
cles (14). 

Fig. 1 Pattern of innervation and histochemical characteristics of the closer muscle of the crush- 
er claw. (Top right) Diagram of crusher claw showing the opener (OM) and closer muscle. The 
closer muscle is composed entirely of muscle fibers with long sarcomeres innervated by the 
"fast" motor axon (A), the "slow" motor axon (0), orby both motor axons (-). Serial frozen 
sections were cut from the entire muscle, and alternate sections were stained for myofibrillar 
adenosinetriphosphatase (A) or NADH diaphorase (B to D) activity (A and B are from same 
plane of section). The closer muscle stained uniformly light for adenosinetriphosphatase activi- 
ty, regardless of the area from which the sections were taken. The NADH diaphorase activity 
was high for all fibers but was highest in the distal region (B), where the fibers are innervated 
solely by the slow motor axon. Thus, the oxidative capacity is related to the pattern of in- 
nervation by the motor neurons, whereas the adenosinetriphosphatase activity is not. 
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Muscle histochemistry was investi- 
gated in intact claws frozen in isopentane 
cooled by liquid nitrogen, and then sec- 
tioned in a cryostat. Serial sections were 
taken from cutter and crusher claws and 
stained for adenosinetriphosphatase (15) 
or reduced nicotinamide adenine dinu- 
cleotide (NADH) diaphorase, the former 

to determine the relative activity of the 
myofibrillar adenosinetriphosphatase 
(16) and the latter to measure the oxida- 
tive capacity of the muscle fibers (8). 

The pattern of innervation by the two 
motor axons followed a distinct configu- 
ration for each of the two claw closer 
muscles (Figs. 1 and 2). The majority of 

Fig. 2 Pattern of innervation and histochemical characteristics of the closer muscle of the cutter 
claw. (Top) Diagram of the cutter claw depicting the large closer muscle and the smaller opener 
muscle (OM). The closer muscle has a large dorsal bundle, composed chiefly of fast muscle 
fibers with short sarcomeres (stippled area) and a smaller ventral bundle of slow fibers with long 
sarcomeres. Of the two motor axons to the closer muscle, the "fast" motor axon innervates the 
dorsal bundle (A), the slow axon innervates some distal slow fibers (0), and the ventral slow 
fibers and some dorsal fibers receive both axons (0). Serial frozen sections were cut from the 
entire muscle, and alternate sections were stained for myofibrillar adenosinetriphosphatase (A 
to C) or NADH diaphorase activity (D to F). Pairs of sections are shown from the medial (C to 
F), middistal (B to E), and distal areas (A to D) (arrows). On the sections stained for 
adenosinetriphosphatase, the fast fibers stained darkly and the more ventral slow fibers stained 
lightly. In the sections stained for NADH diaphorase, the fast fibers stained lightly and the 
slow fibers more darkly, particularly in the sarcolemmal region. In the distal region (D), where 
the slow muscle fibers are innervated solely by the slow motor neuron, they stained more dark- 
ly, revealing a higher oxidative capacity than the more medial and proximal slow fibers. 
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muscle fibers in the cutter claw receive 
the fast motor axon, and the slow motor 
axon serves primarily the ventral bun- 
dles of slow muscle fibers. In the crusher 
claw, both the fast and slow motor axons 
serve more than 67 percent of the muscle 
fibers. The synaptic properties of the ax- 
ons are significantly different; in general, 
the fast axon in both claws had ex- 
citatory PSP's ranging from 1 to 5 mV at 
1 Hz stimulation, which facilitated two- 
fold at 10 Hz. The PSP's from the slow 
axon were smaller at 1 Hz (< 0.1 to 2 
mV), but they facilitated about sixfold at 
10 Hz (17). For both axons, the largest 
PSP's were found in muscle fibers in- 
nervated exclusively by that axon. 

The histochemical staining properties 
of the closer muscles exhibited consid- 
erable heterogeneity when stained for 
NADH diaphorase, an indicator of 
oxidative capacity (18). The closer 
muscle of the crusher claw is composed 
entirely of long-sarcomere (6 to 12 am) 
slow fibers (19). In general the staining 
intensity of these fibers was related to 
the presence or absence of innervation 
by the fast motor axon. Where the fast 
motor axon innervated the muscle fibers 
(along with the slow axon), the staining 
intensity was low. However, in the distal 
portion of the closer muscle, where fi- 
bers are innervated solely by the slow 
motor axon (Fig. 1), there was a very in- 
tense staining for NADH diaphorase ac- 
tivity, suggesting a very high oxidative 
capacity. A similar darkly staining area 
was present in the proximal region of the 
muscle, where a bundle of fibers is also 
innervated solely by the slow axon (not 
shown). 

In the cutter claw, the NADH diapho- 
rase staining pattern was again corre- 
lated to the pattern of innervation. The 
dorsal fibers are all fast with short sarco- 
meres (2 to 4 ,tm) and innervated solely 
by the fast axon; these fibers stained 
lightly for NADH diaphorase activity. 
The majority of the ventral slow fibers 
receive both axons; these stained with an 
intermediate intensity. In the distal re- 
gion, a bundle of slow fibers receiving 
only a slow motor axon (Fig. 2) stained 
darkly for NADH diaphorase (Fig. 2D). 

The staining pattern for myofibrillar 
adenosinetriphosphatase was quite dif- 
ferent and is apparently independent of 
the pattern of innervation. Only two 
staining patterns were observed for this 
enzyme in animals with mature claws; 
fast muscle (short sarcomere) stained 
darkly, whereas slow muscle (long sar- 
comere) stained lightly. This was true 
even for slow muscle fibers in the crush- 
er claw, which are innervated solely by 
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the fast axon (Fig. 1A). These staining 
properties could be due either to dif- 
ferences in the specific activity of the 
myofibrillar adenosinetriphosphatases in 
fast and slow fibers or to differences in 
the amount of enzyme present. These 
possibilities were tested by dissecting 
out bundles of fast and slow muscle fi- 
bers from representative areas of both 
claws. In agreement with previous find- 
ings on lobster abdominal muscle (16), 
specific activity of the myofibrillar 
adenosinetriphosphatase in fast muscle 
was two to four times that in slow muscle 
(20). 

These results suggest that the muscle 
fiber properties of myofibrillar adeno- 
sinetriphosphatase activity, sarcomere 
length, and probably related character- 
istics (21) are not correlated in any 
simple way with the pattern of in- 
nervation by the fast and slow motor 
neurons. We have observed slow muscle 
(long sarcomere and low adenosinetri- 
phosphatase activity) innervated by the 
slow axon alone, by the fast axon alone, 
or by both axons (Fig. 1). Fast muscle 
can be innervated by the fast axon alone 
or by both axons; we have yet to observe 
fast muscle fibers receiving only the slow 
axon. Furthermore, these muscles have 
been demonstrated to be not under rigid 
genetic control, and their properties can 
be transformed during early juvenile 
stages (7). The factors controlling these 
related properties have yet to be deter- 
mined, but as in vertebrate muscle (5), 
activity may play an important role (22). 

The oxidative capacity of the muscle 
fibers is not directly correlated with the 
muscle fiber type (based on adenosine- 
triphosphatase activity and sarcomere 
length). In accord with previous findings 
(9), we found that this property is highly 
variable even among fibers yith similar 
sarcomere lengths. Thus, oxidative ca- 
pacity appears to be proportional to the 
degree of innervation by the slow motor 
neurons. The amount of excitatory PSP 
depolarization by the slow axon is corre- 
lated with this metabolic profile. The 
largest PSP's evoked by slow axons are 
found in the distal fibers, which receive 
only this motor axon; they probably re- 
ceive more depolarization from this axon 
than those fibers which also receive the 
fast motor axon. 

These findings lead to another impor- 
tant conclusion regarding crustacean 
skeletal muscle, namely, that there may 
be greater heterogeneity of fiber types 
within a muscle than had been pre- 
viously appreciated. Crustacean skeletal 
muscles are known for great species-to- 
species diversity, but they have general- 
18 JANUARY 1980 

ly been characterized as fast, slow, or in- 
termediate for a given species (23). Only 
rarely has heterogeneity of some proper- 
ties been described among what ap- 
peared to be an otherwise uniform popu- 
lation of muscle fibers (19, 24). We have 
demonstrated that some of this diversi- 
ty may depend on the pattern of in- 
nervation by the motor neurons, but that 
other features are apparently indepen- 
dent of this influence (25). 
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