
water-soluble compounds like sucrose 
and erythritol have permeability coeffi- 
cients equal to 10-8 to 10-7 cm sec-1 (6, 
9). 

Low but significant cerebrovascular 
permeabilities explain why opioid pep- 
tide uptake by brain might not be mea- 
surable by the brain uptake index meth- 
od (in which brain uptake is measured 
within 15 seconds after injection), or 
why plasma concentrations must be 
maintained for minutes if observable 
central effects are to be produced (2, 4, 
7). Figure 1 illustrates the prediction by 
Eq. 3, as based on data in Table 1, that a- 
[D-Ala2,14C-Homoarg9]endorphin will fill 
half of the extracellular space of the 
caudate nucleus in 5.9 minutes, after a 
step rise in plasma concentration of un- 
bound peptide. In contrast, the brain 
concentration does not rise above 0.1 
percent of the initial plasma concentra- 
tion of unbound peptide if the peptide is 
injected as a bolus. Whereas the half- 
time for brain uptake is equal to 0.693 
V/PA (Eq. 3), the peptides in Table 1 
would enter a 30 percent extracellular 
brain space with half-times of 3 to 11 
minutes. 

We have shown that four synthetic an- 
alogs of natural opioid peptides have a 
moderate cerebrovascular permeability 
that is sufficient to produce significant 
brain uptake within 3 to 11 minutes, after 
a step rise in plasma concentration. 
There may be little uptake after a bolus 
injection if the peptide disappears rapid- 
ly from plasma, or if binding to plasma 
protein is marked. The findings are con- 
sistent with observations that some pep- 
tides exert central effects in conscious 
animals when administered systemically 
(3, 7). A significant cerebrovascular per- 
meability suggests, furthermore, that 
feedback may operate between circulat- 
ing peptides that have potential central 
effects, and brain sites that regulate their 
release into the circulation (1). 
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Gene Affecting Superoxide Dismutase Activity Linked to the 

Histocompatibility Complex in H-2 Congenic Mice 

Abstract. The activity of cyanide-sensitive, Cu-Zn superoxide dismutase (SOD) 
was studied in liver cytosolsfrom H-2 congenic strains of mice. Higher SOD activity 
was found in livers of mice having H-2b/A.BY, BO1, and C3H.SW/ haplotypes than in 
those of H-2a, H-2k and H-2d haplotypes. Segregation studies supported these corre- 
lations. In H-2 recombinant strains of mice, the genes influencing the liver SOD 
activity occur, as ascertained by mapping techniques, at or near the H-2D region of 
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Superoxide dismutase (SOD) (E.C. 
1.15.1.1) appears to be detectable in all 
aerobic cells (1). This enzyme catalyzes 
the dismutation of the superoxide anion, 
02-, in which one electron is transferred 
to form molecular oxygen, in the sense 
of the following equation; 

202- + 2H+ - H202 + 02 

The work of Fridovich (2) suggests 
that the most important function of SOD 
is to protect aerobic cells from the oxido- 
reduction effect of the toxic 02- formed 
during aerobic cell metabolism. Atmo- 
spheric oxygen is capable of inducing the 
synthesis of SOD; molecular oxygen 
may be toxic to cells displaying an anaer- 
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obic metabolism and, in high concentra- 
tion, to aerobic cells also (3). 

On the basis of studies on the structure 
of SOD, Richardson et al. (4) drew atten- 
tion to the similarity between the three- 
dimensional protein structures of the im- 
munoglobulin domain and Cu-Zn SOD 
subunits. 

They proposed that the similarity in 
the tertiary structures of the two mole- 
cules of different functions is indicative 
of their evolutionary relatedness. Fur- 
thermore, the structures of immunoglob- 
ulins are similar to those of the major his- 
tocompatibility antigens (H-2) in mice (5) 
and it has been proposed that both mole- 
cules are the products of genes that were 
differentiated from a common, primor- 
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dial "primitive H-2" gene complex in the 
course of evolution (6). 

On the basis of this assumption of an 
evolutionary connection, and the exis- 
tence of such antigens on all somatic 
cells, we have sought a correlation be- 
tween the allele series and the activity of 
SOD or a correlation in individual mice 
of different backcross generations from 
parental strains with high or low SOD 
activity. Approximate mapping of the 
genes responsible for differences in SOD 
activity was carried out on different H-2 
recombinant strains of mice. 

All experimental mice were produced 
in the Animal House of the Institute of 
Genetics (7), and originated from breed- 
ing nuclei of inbred strains furnished by 
P. Ivanyi of the Institute of Experimental 
Biology and Genetics, Prague. 

The lines were maintained by sister- 
brother mating, and the H-2 phenotype 
of backcross progenies was checked by 
hemagglutination tests, with polyvinyl- 
pyrrolidone K-60 and 0.1 percent human 
serum albumin, according to Capkova 
and Demant (8). All animals were male 
mice kept under standardized condi- 
tions, and were 3 to 4 months old at the 
time of experiment. Twenty hours before 
the animals were killed, feeding was dis- 
continued but drinking water was not 
withdrawn. 

Although all aerobic cells contain SOD 
and display H-2 antigens, liver analyses 
are given here, since they offer high val- 
ues for SOD, and differences in this or- 
gan satisfactorily represent comparisons 
made for several tissues of the different 
mouse strains. 

The activity of SOD was measured via 
its interference in the adrenaline to ad- 
renochrome conversion (9). The fresh 
liver was homogenized in a French press 
and diluted with distilled water (1:100). 
The slurry was clarified by centrifugation 
(30 minutes, 13,000g). The supernatant 
was treated with ethanol and chloroform 
(0.25 and 0.15 by volume, respectively) 
to exclude the interfering mitochondrial 
SOD. Then, K2HPO4 (300 g/liter) was 
added and to portions of the ethanol-rich 
phase two volumes of acetone were add- 
ed. After centrifugation, the precipitate 
was lyophilized, and then diluted in 0.5M 
phosphate buffer (pH 7.0); the cytosol 
Cu-Zn SOD activity was then deter- 
mined by the method of Veisiger and Fri- 
dovich (10) with slight modification. Pro- 
tein was determined ( 1), with bovine 
serum albumin as the standard. 

The activity of SOD per milligram of 
protein was higher in the liver of mice 
with H-2b, than those with H-2a, H-2k, 
and H-2d haplotypes on B1O.A and C3H 
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background (Figs. 1 and 2). These dif- 
ferences were significant (P < .001). The 
activity of SOD of F5 hybrids resulting 
from a cross of a high (C3H.SW) and low 
(C3H/Di) parental strain was inter- 
mediate, being significantly lower 
(P < .04) and slightly higher (P < .08) 
than that of the two parental strains, re- 
spectively. Similarly, intermediate SOD 
activity was detected in kb hetero- 
zygotes of the backcrosses and signifi- 
cantly higher values were observed in 
backcross with bb than with kk pheno- 
types (Fig. 2). 

Since significantly higher SOD activity 
was found in B10.A/2R/ and B1O.A/4R/ 
than in BIO.A/5R/ mice (P < .01 and 
P < .001), it can be inferred that genes 
mapped at or linked to the H-2D region 
might be responsible for the differences 
in the SOD activity detected among the 
H-2 recombinant strains on B10 back- 
ground. 

There are differences in the SOD ac- 
tivity of strains C3H/Di, BO1.BR, and 

Strains H-2 SOD activity/mg protein 
phenotype 0o 20 30 40 50 60 

B10 b - 

B1O.A a - _ 

BIO.BR k _- 
B1O.D2 d __ 

B1O.A/2R/ h2 _+_ 

B1O.A/4R/ h4 _ __ 

B1O.A/5R/ i5 

B10.AKM m 

Fig. 1. Association of high and low SOD activ- 
ity (in liver) with different H-2 phenotypes in 
H-2 congenic strains and their backcrosses. 
The length of columns indicates the arithmetic 
mean of specific SOD activity of at least ten 
mice of each H-2 congenic strain including 30 
of C3H/Di, 21 of C3H.SW, 29 of/Di x SW/F,, 
and 10 to 21 of the different backcrosses. The 
bars indicate the standard deviation. Six sam- 
ples from the same liver were used for parallel 
determinations of specific SOD activity. 

Strains and H-2 SOD activity/mg protein 
crosses phenotype 10 20 30 40 50 60 

A/Ph a 
A.BY b -+- 

B1O.A a 4 
B0O b 
CBA k 

C3H.Di k 
C3H.SW b 
(DixSW)Fl kb -+- 

Fl xC3H.Di kb 
F1 xC3H.Di kk - 

F1 xC3H.SW kb 
F1 xC3H.SW bb 

Fig. 2. Liver SOD activity in different H-2 re- 
combinant strains of mice on B10 back- 
ground. The length of columns indicates the 
arithmetic mean of ten mice of each strain and 
the bars the standard deviation. Six samples 
from the same liver were used for parallel de- 
terminations. 

CBA, as well as B10.A and A/Ph, all 
with the same H-2k or H-2a phenotypes, 
respectively, differing only in their genes 
other than H-2 (background), but these 
differences are of low significance 
(P < .50 and P < .28) (Figs. I and 2). 
Our results suggest that the liver SOD 
activity exhibits a well-defined correla- 
tion with the H-2 haplotypes of different 
H-2 congenic strains and a strong associ- 
ation in the individual mice of their back- 
cross progenies. 

Although the "regulatory" nature of 
these genes has only been suggested by 
our experiments, their approximate link- 
age at, or near to, the H-2D region on 
chromosome 17 (linkage group IX) of 
mice seems clearly indicated. It should 
be noted that the "structural" genes of 
SOD-1 and SOD-2 are linked to human 
chromosomes 21 and 6, respectively, as 
revealed by somatic cell hybridization 
(12-14). 
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