
structures, including their stereochemis- 
try. It is of interest that the N6 position of 
adenine is in the major groove of the 
DNA double helix, whereas the N2 posi- 
tion of guanine is in the minor groove. 
The significance of attack by BPDE 
at these two different sites, with respect to 
stereochemical aspects, interference 
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repair enzymes, and the carcinogenic 
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lation is essential in producing anti- 
dromic impulses in order that the muscle 
receive no artificially generated neural 
activity. 

We demonstrated the technique suc- 
cessfully in 15 cats by using the prepara- 
tion shown in Fig. 1A. Regulated current 
pulses were delivered to the sciatic nerve 
through an asymmetrical tripolar cuff 
electrode (Fig. lB). Of the current re- 
turning to the cathode, 10 to 30 percent 
originated from the proximal anode; the 
remainder flowed from the closer distal 
anode. Orthodromic propagation was 
blocked by the potential gradient arising 
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between the cathode and distal anode, 
which interfered with the flow of ex- 
citatory action currents. Spurious ortho- 
dromic excitation that occurred distal to 
the block as a result of stimulus current 
spread was suppressed by the tripolar 
electrode configuration, which tended to 
contain current flow within the insulator. 
The stimulus wave form consisted of a 
square leading edge and a 350-tusec 
plateau phase followed by an exponen- 
tial falling phase (1). Electromyogram 
(EMG) tracings weie obtained by re- 
cording distally (R1) from the medial gas- 
trocnemius with intramuscular elec- 
trodes of fine stainless steel wire. Com- 
pound sciatic neurogram tracings were 
obtained by recording proximally (R2) 
with 45-,um straight wires inserted into 
the nerve trunk with hypodermic needles 
(29 gauge). 

Figure 2A shows a typical sequence of 
responses recorded at R1 and R2 with in- 
creasing stimulus amplitude. A maximal 
EMG response was elicited at an ampli- 
tude of 0.5 mA; as the amplitude was in- 
creased to 6 mA, the response dis- 
appeared. Simultaneously, the neuro- 
graphic response grew to a maximum as 
smaller fibers were recruited. This dem- 
onstrates the feasibility of preventing or- 
thodromic propagation from the stimulus 
site to the muscle. The persistence of the 
antidromic response is implied by the 
maximal sciatic discharge at R2. How- 
ever, an additional experiment was re- 
quired to demonstrate conclusively that 
the particular axons innervating the me- 
dial gastrocnemius were among those 
discharging antidromically. This was ac- 
complished by establishing that, after the 
blocking stimulus, these axons were re- 
fractory on the proximal side of the 
blocking cuff. 

Stimulating hook electrodes (S2) were 
placed proximal to the cuff and their 
stimulus amplitude was adjusted to pro- 
duce a maximal EMG response with a 
100-A.sec pulse. Neurogram recording 
sensitivity was adjusted such that the 
compound action potential (recorded at 
R2) elicited by a maximal test stimulus at 
Sl to the medial gastrocnemius branch 
was clearly visible (trace a in Fig. 2B). 
Stimuli were then delivered at S2 imme- 
diately after the blocking pulse. The 
blocking pulse itself elicited a strong 
neural discharge at R2 (traces b to h). 
Stimulation at S2 failed to elicit any fur- 
ther neural activity when delayed from 
the onset of the blocking pulse by 1.75 
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dicates that all axons normally excited 
by stimulation at S2, including those in- 
nervating the medial gastrocnemius, 
were refractory in this time period, hav- 
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is blocked anodically by means of a quasi-trapezoidal stimulus twave form and a 
modified tripolar electrode configuration. Propagation in the other direction pro- 
ceeds unhindered. This technique may be applicable to collision blocking of motor 
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ing already propagated an antidromic im- 
pulse in response to the blocking stimu- 
lus. As the delay was increased to 2.9 
msec (traces c to g), the neural response 
gradually returned to normal and there 

was a simultaneous recovery of the max- 
imal EMG response. 

This stimulation technique may be ap- 
plicable to development of a clinically 
useful motor-nerve block for spasticity 

control. For example, a short-term colli- 
sion block may be very effective in con- 
trolling urinary sphincter spasticity 
(which interferes with efforts to urinate) 
after certain injuries to the spinal cord 
(2). Stimulus repetition rates adequate to 
block natural motor activity have been 
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demonstrated, and successful biphasic 
coupling of the stimulus has been 
achieved (3). Although safe levels of 
electrical charge injection have not been 
determined for peripheral nerves, the 

I Sciatic stimulus strengths that we used appear 
nerve to meet realistic electrode surface-area 

requirements (4). 
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Applied Neural Control Laboratory, 
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Cleveland, Ohio 44106 

References and Notes 

1. These parameters represent the shortest stimu- 
lus pulse adequate to sustain an orthodromic 
block as determined by a study (C. van den Ho- 
nert and J. T. Mortimer, in preparation) of re- 
sponses to single pulses. Parameters investi- 
gated include pulse width (0 to 8 msec), linear (0 
to 10 msec) and exponential (0- to 10-msec time 

ding sites, constant) falling edges, fraction of current di- 
4a b ' k verted to the proximal anode (0 to 100 percent), lar block- and electrode spacing. Of the current flowing 

silicone- through the proximal anode, the proportion nec- 
essary to suppress spurious excitation was nev- 
er greater than 30 percent, and no adjustment 
during the course of an experiment was re- 
quired. 

2. D. B. Halverstadt and W. F. Leadbetter, Br. J. 
Urol. 40, 175 (1968). 

3. According to the analysis of A. Iggo [J. Physiol. 
(London) 142, 110 (1958)], a stimulus rate of V/ 
2d Hz is required to establish a complete block, 

nyograms where V represents nerve conduction velocity 
ur r ams and d the distance between the stimulus site and 

urograms the cell body. (This is subject to the constraint 
blocking that the interval between efferent impulses is 

amplitude never less than the interstimulus interval.) In 
350-gsec practice, a lower frequency would suffice if (i) 

the refractory period is included in the analysis; :onstant). (ii) a partial block is adequate (some efferent im- 
Lntidromi- pulses may escape the block); or (iii) the source 
itation in of efferent impulses is inhibited by the invasion 
ing stim- of antidromic impulses. In particular, the in- 

tegration of synaptic inputs to the motor neuron 
imulus S1 is reset by antidromic impulses. A stimulation 
G at R1 rate slightly greater than the natural frequency 
)n poten- of discharge would thus serve to prevent that in- 

tegration process from ever achieving threshold. 
edial gas- Normal motor-nerve discharge typically has a 
'aces b to frequency between 5 and 25 Hz, and rarely ex- 

pulse at ceeds 40 Hz [R. W. Clark, E. S. Luschei, D. S. 
e leading Hoffman, Exp. Neurol. 61, 31 (1978); B. Derfler 

and L. J. Goldberg, ibid., p. 592; A. W. Monster 
nulus (2.8 and H. Chan, J. Neurophysiol. 40, 1432 (1977); 
hase time M. Kato and J. Tanji, Brain Res. 40, 345 (1972); 

indicate J. Tanji and M. Kato, Exp. Neurol. 40, 771 
latn on (1973)]. A separate study (C. van den Honert lation on and J. T. Mortimer, in preparation) has in- 

ng stimu- dicated that orthodromic blocking is well sus- 
al neural tained at stimulation frequencies up to 50 Hz 

ly deflec- with the stimulus described here and up to 30 Hz 
with a balanced biphasic stimulus wave form of 

response. similar charge. The study uses this technique to 
(traces b give a preliminary demonstration of blockage of 

S2 pro- muscular contraction. The principal complica- 
tion envisioned in clinical implementation of col- 

is artifact lision blocking is excitation of afferent fibers 
eflection). within the nerve and consequent reflex effects. 
(traces d These effects will require individual assessment 

e to stim- for each potential application. Techniques for 
selective excitation of small fibers [N. Acco- 

ps as the nero, B. Giorgio, G. L. Lenzi, M. J. Manfredi, 
curs out- J. Physiol. (London) 273, 539 (1977); W. Burke 
nriod, and and G. L. Ginsborg, ibid. 132, 586 (1956)] may ' be adaptable to antidromic pulse generation, but >onse de- the long pulse widths used in the studies cited 

are not amenable to high repetition rates. 
4. C. van den Honert, thesis, Case Western Re- 

serve University (1979). 

16 May 1979; revised 24 July 1979 

SCIENCE, VOL. 206 

A R1 

B 

Distal 

A 
Stimulus 

amplitude (mA) 

a 

b 
c 

d 
e 

9 q 

C 

d 

Delay (msec) 

1. 36 

1. 77 

1. 96 

i 


