
addition of 10-5M DNP further inhibited 
SCC, but the QCO2 was significantly in- 
creased. This effect is consistent with the 
action of an uncoupling agent which di- 
minishes ATP production while stimulat- 
ing metabolism by removing the rate-lim- 
iting constraints of respiratory control. 
The respiratory inhibitors rotenone and 
antimycin (9) also inhibited SCC and 
QCO2. In marked contrast to the trans- 
port inhibitors, DNP had no significant 
effect on QCO2 in the presence of rote- 
none or antimycin. Although CO2 may 
be produced by the pentose shunt path- 
way, the respiratory quotient of toad 
bladders is constant (10), thus, it is un- 
likely that changes in the rate of the pen- 
tose shunt pathway could account for the 
present findings. 

These results are consistent with the 
view that respiration which is diminished 
by direct inhibition of transport can be 
restimulated by the presence of an un- 
coupling agent; direct inhibition of respi- 
ration by a metabolic inhibitor cannot be 
reversed by an uncoupling agent. This 
approach may be useful in the investiga- 
tion of physiological factors or pharma- 
cological agents that affect biological 
work functions. 
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Liposomes and Local Hyperthermia: Selective Delivery 
of Methotrexate to Heated Tumors 

Abstract. Liposomnes with phase transitions a fenw degrees above physiological 
temperature delivered more than four times as much methotrexate to murine tumors 
heated to 42?C as to unheated control tumors. Most of the accumulated drtug ap- 
peared to be intracelluldar and bound to dihydrojolate reductase, the enzyme blocked 
by methotrexate in its role as an antineoplastic agent. 
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Systemic drug therapy is a notoriously 
blunt weapon with which to attack local 
disease. In a few cases, for instance with 
antibiotics, a drug may be so selective in 
action that therapeutic concentrations 
can be achieved without toxic side ef- 
fects. More often, a risk of harmful ef- 
fects must be tolerated. In tumor chemo- 
therapy, for example, the beneficial and 
toxic actions are so delicately balanced 
that relatively small degrees of selective 
drug localization could be useful. We re- 
cently suggested a way of combining 
liposomes as drug carriers with local hy- 
perthermia to achieve preferential local 
release of drug in a target area (1). We 
now present experiments clearly show- 
ing such an effect in vivo. 

Liposomes (2) are microscopic parti- 
cles consisting of a single lipid bilayer 
enclosing a single aqueous compartment 
(unilamellar vesicle) or a number of con- 
centric bilayers enclosing an equal num- 
ber of aqueous spaces (multilamellar 
vesicle). Their use as pharmacological 
capsules has been limited largely by in- 
ability to direct them to particular cells 
or anatomical sites. Local hyperthermia 
(3), the heating of a region of the body a 
few degrees above its normal temper- 
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changed with cells directly or thro 
diation of serum components such 
teins. 
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ature, may provide a basis for such se- 
lectivity. Hyperthermia is under study 
for tumor therapy because it has been re- 
ported to affect tumor cells more than 
normal cells (4) and to have synergistic 
actions in combination with drugs (5) and 
with radiotherapy (6). 

Our approach to the combination of 
liposomes with hyperthermia is shown 
schematically in Fig. 1 for the case of in- 
travenous injection. Lipids are selected 
so as to make liposomes with liquid-crys- 
talline phase transition temperatures (T7.) 
a few degrees above physiological, near 
the range obtainable by local hyper- 
thermia. The liposomes remain relatively 
stable in the circulation at temperatures 
well below Tc. but release their contents 
as T(. is approached (7). The rate of re- 
lease is dependent on the rate of change 
of temperature and is markedly en- 
hanced by serum components (1), princi- 
pally lipoproteins (8). Essentially total 
release of liposome contents can be 
achieved in vitro within a few seconds by 
raising the temperature through T(. in the 
presence of serum, so it seemed possible 
that large fractional releases could be 
achieved in vivo during passage of lipo- 
somes through the small arteries, arteri- 
oles, and capillaries of a heated region. 
But it was not clear that conditions of lo- 
cal hyperthermia safe for normal tissues 
(for example, heating to 42?C for 1 hour) 
could be exploited effectively. It also 
seemed possible that the release might 
take place for the most part in the venous 
system, from which the drug would sim- 
ply be washed out of the area by blood 
flow. 
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livery to the site. Third, its phar 
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tumor systems at both the celli 
the pharmacokinetic levels (I 
such background information 
helpful in designing and interpre 
periments. We used low doses 
in order to remain in a linear kii 
gime for transport through the tu 
membrane and to avoid saturati( 
tracellular binding to dihydrofc 
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To make liposomes with the a 
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the blood by redistribution within t 
minutes. Encapsulated MTX cleare 
time constant of 38 minutes in the al 
heating and 23 minutes (for the firs 
utes) if a tumor was heated. Heating 
acts by releasing drug from the smal 
of liposomes passing through the he, 
in each circulation. The MTX doses 
,/g/kg. Liposomes contained 100 m\ 
per kilogram of mouse body weigh 
temperatures averaged 36.0?C and 
were heated to 42? + 0.1?C. Each po 
sents the mean for retro-orbital cc 
from four animals; error bars repres 
dard errors. Liposomal MTX was 1 
serum, rather than blood cells, after 

:macolo- [3',5',9(n)-:H]MTX) was purified before 
n mouse use by chromatography on DEAE cellu- 
ular and lose (12). Solutions for encapsulation in 
0), and liposomes contained 2 percent NaHCO:, 
is very and 270 MM MTX with a specific activity 
-ting ex- of 374 A/Ci/,lmole. The water-soluble 
of MTX fluorophore carboxyfluorescein (CF) 
netic re- was also added to a concentration of 20 
mor cell mM to permit assessment of the integrity 
on of in- and transition temperature of each lipo- 
)late re- some preparation. 

The lipids were vortex-mixed at 55?C 
Lppropri- and then sonicated for 1 hour at 55?C un- 
ht) mix- der argon (13). The sonicate was chilled 
4lcholine quickly to 0?C and passed over a 15 by 50 
41?C by mm column of Sephadex G-25. The re- 
ry) and sulting liposome suspensions were al- 
(DSPC: most clear initially but became more tur- 

), both bid over a period of hours, indicating 
Birming- slow increase in particle size (14). Most 
re single experiments were done on the day of 
aphy of preparation, but those performed the fol- 
nd after lowing day gave similar results. 
nersham After preparation, liposomes were 

routinely tested for leakage in 10 percent 
fetal calf serum or mouse plasma by us- 
ing a method based on fluorescence self- 

| quenching to monitor release of CF dur- 
ing temperature scans (15). In the first 
hour after preparation the temperature of 
onset of rapid release often shifted from 
about 38?C to about 40?C and thereafter 

ie MTX, remained stable. This finding is consist- 
ating 

ent with a change from small unilamellar 
vesicles to a form, possibly multilamel- 
lar, with more ordered packing of lipids 

me MTX,- (14). More than 90 percent of total en- 
J tumor capsulated CF was released within 10 

seconds during temperature scans at 
14?C per minute. In other experiments 
CF and [:H]MTX were found to be en- 
capsulated with identical efficiency and 
to be released from the liposomes at sim- 
ilar rates. 

Lewis lung tumors were grown subcu- 

--80 taneously in the flanks of 22- to 27-g 80 
B6D2Fi male mice by inoculation of 10l 
viable cells (16). Tumors were used on 

ilation of days 6 to 9 and their weights ranged from 
free drug 75 to 400 mg. They were heated by mi- 
r at 42?C crowaves (2.45 GHz) from a direct-con- 

arance of tact applicator in a system (17) that per- 
ited from mitted four animals to be heated at once. 
he first 3 The temperature in the center of a tumor 
~d with a 
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t 45 min- controlling signal from an implanted 
probably thermocouple. Temperatures at different 
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wetre 0 s , 6e.r ed wi0th 1?Cln 
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I tumors between the time of injection and the end 
int repre- of heating. The mice were anesthetized 
eletctions with chloral hydrate before heating and ;ent stan- 
argely in before they were killed. Tumors were 
1 hour. heated to 42?C, and drug was then inject- 
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ed by tail vein. Blood was collected by 
retro-orbital puncture or, at the time of 
death, by axillary bleeding. Blood and 
tumors were burned to CO2 and H2O in a 
Packard Combustor (Downers Grove, 
Illinois) model 306 for counting of 
3:H (and sometimes 14C). 

We first studied the rate at which 
[:H]MTX was cleared from the blood- 
stream when injected in liposomes or in 
free form (Fig. 2). Most of a dose of free 
MTX was cleared within 3 minutes by 
redistribution into extravascular com- 
partments (11), whereas liposome-en- 
capsulated MTX remained in the circula- 
tion much longer (18). Of most interest, 
the clearance rate of liposomal MTX was 
increased (65 percent) when a tumor was 
heated. This suggested rapid release of 
MTX from the liposomes in the small 
fraction of the blood passing through the 
heated area in each circulation. Although 
some unknown systematic effect of heat- 
ing on the circulatory system could not 
conclusively be ruled out, we were en- 
couraged to think that these liposomes 
would be appropriate for preferential de- 
livery of MTX to heated tumors. 

Since liposomal MTX was largely 
cleared in 1 hour from the circulation of 
animals with heated tumors (that is, to 10 
percent of its initial concentration), we 
heated for that length of time after injec- 
tion in subsequent experiments. Figure 3 
shows the results of our first experiment 
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Free MTX ( 

Liposome MTX C 
Free MTX ( 

Liposome MTX C 
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Fig. 3. Incorporation of [3H]MTX into subcu- 
taneously implanted Lewis lung tumors 4 and 
20 hours after tail-vein injection of free MTX 
or liposomes containing MTX. Heated tumors 
were maintained at 42? + 0.1?C for about 15 
minutes before and 1 hour after injection. At 4 
hours heated tumors with liposome MTX had 
taken up 3.6 times as much MTX as the aver- 
age of the three control configurations. At 20 
hours the factor was 3.4. Blood levels of drug 
were far too low to account for drug concen- 
trations in the tumors. Doses were (MTX) 4.4 
/Lg/kg and (lipid) -73 mg/kg. Rectal temper- 
atures averaged 36.5?C. Data are means ? 
standard errors from four animals. 
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Fig. 4. Incorporation of .I , , 
[:H]MTX in Lewis lung tu- Not heated 
mors of double-tumor mice 
4 hours after tail-vein injec- (a) Right heated 

.... 

tion of liposome-encapsulated 
MTX. Conditions were as in (b) Neither heated 

Fig. 3. The dose was (MTX) 
6.0 ,/g/kg and (lipid) 100 mg/. 
kg. Rectal temperatures aver- 
aged 35.4?C. (a) Right tumor (c) Right heated C 
heated; ratio, 4.8. (b) Neither (d) Right heated, 
tumor heated; ratio, 1.15. (c) competing free MTX 
Right tumor heated; ratio, 4.7. (e) Right heated, 
(d) Right tumor heated; 300 cooled before injection 
mg/kg competing dose of free I I I I I - I 
unlabeled MTX included in in- 1 0 1 2 3 4 5 6 
jection; uptake in heated tu- Blood Tumor 
mor decreased more than five- 
fold, indicating inhibition byX (percent of dose/g 
unlabeled MTX. (e) Right tumor heated 1 hour, liposomes injected 5 minutes later (after tumors 
returned to body temperature); ratio, 1.02. Experiments (a) and (b) are separated from (c) to (e) 
to indicate use of different batches of liposomes and tumors. Data are means + S.E. from 
four animals. 

on accumulation of [aH]MTX in tumors. 
The amounts of MTX found 4 hours after 
injection (3 hours after the end of heat- 
ing) were approximately the same for the 
three control groups (free MTX, non- 
heated tumor; liposome MTX, non- 
heated tumor; and free MTX, heated tu- 
mor), and the amounts of uptake closely 
matched those obtained for free MTX in 
previous studies of this tumor system 
(11). In contrast, the amount of [3H]- 
MTX in the heated tumors treated with 
liposomes was 3.6 times as great as the 
average of the controls. As described 
later, other experiments indicated that 
essentially all of the :H counts represen- 
ted intact MTX and that most of the 
MTX was intracellular. Blood levels of 
MTX were far too low to account for 
the additional accumulation of drug in 
heated tumors (19). After 20 hours there 
was still considerably more [aH]MTX 
in the heated, liposome-treated tumors. 

To rule out the possibility that dif- 
ferences in uptake resulted from system- 
ic rather than local effects of heating, we 
did all further experiments on mice car- 
rying tumors in both the left and the right 
flank (double-tumor mice), one tumor 
serving in each experiment as an internal 
control. The large ratios of MTX uptake 
obtained are indicated in Fig. 4, a and c. 
The mean ratios obtained for repetitions 
of this experiment over 3 months with 
different batches of tumors and of lipo- 
somes was 4.3 + 0.3 (standard error, 21 
animals). In the "sham" experiment 
(Fig. 4b) neither tumor was heated and 
there was little difference in [3H]MTX 
uptake. 

Persistence of most of the [3H]MTX in 
the tumors for as long as 20 hours pro- 
vided strong circumstantial evidence 
that the drug had penetrated the cells and 
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was bound to dihydrofolate reductase. 
Since serum levels decline rapidly, it 
seemed unlike that any other pool would 
be so persistent. To exclude the possi- 
bility that intact liposomes containing 
[:H]MTX might be sequestered preferen- 
tially in the heated tumors, perhaps as a 
result of endothelial leakiness, we inject- 
ed [:H]MTX-containing liposomes with a 
large dose (300 mg/kg) of free, unlabeled 
MTX. This dose is not acutely toxic to 
the mice, but it saturates the MTX trans- 
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none as other metabolites or degradation 
products of MTX. 

Other experiments dealt with a num- 
ber of trivial possibilities: results were 
similar whether tumors on the right or 
left were heated; tumor size had little ef- 
fect on MTX uptake per gram (ratios 
were similar even when one tumor was 
several times as large as the other); 
puncturing the tumors with 25-gauge 
needles used for inserting thermocouple 
probes did not change uptake; dif- 
ferences in rectal temperature, from 34? 
to 37?C, during heating had no major ef- 
fect, but there was a suggestion that rec- 
tal temperatures above 37?C begin to di- 
minish the ratios of heated to unheated 
uptake; superficial and deep halves of 
the tumors (both heated and unheated) 
took up MTX identically; liposomes con- 
taining only pH buffer had no effect on 
the uptake of free MTX; and the micro- 
waves had no discernible effect on lipo- 
some leakage beyond that produced by 
equivalent heating under a tungsten-fila- 
ment lamp. 

There are at least six ways in which 
local hyperthermia might increase the ef- 
fectiveness of drug-containing lipo- 
somes: (i) by promoting selective drug 
release at temperatures near that of the 
lipid phase transition of the liposomes; 
(ii) by increasing the local blood flow; 
(iii) by increasing endothelial per- 
meability to particles, thereby enhancing 
accumulation of liposomes in the target 
tissues; (iv) by increasing the per- 
meability or susceptibility of target cells 
to drug released from the liposomes; (v) 
by increasing direct transfer of drug from 
liposomes to cells-for example, by fu- 
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We cannot yet rule out (v), a direct lipo- 
some-cell interaction rendered temper- 
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or the tumor cells. In principle, several 
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to dihydrofolate reductase weighs 
against (iii) above (unless an initial se- 
questration were followed by delivery to 
the cell cytoplasm). Likewise, the inef- 
fectiveness of hyperthermia in promot- 
ing uptake of free MTX by the tumor 
(see Fig. 3) indicates that we are not 
seeing the results of (iv), a heat-induced 
increase in cellular transport of MTX. 
Also, increased blood flow (ii) would not 
be effective in these experiments since 
uptake of MTX into Lewis lung tumor 
cells is limited by membrane transport, 
not by blood flow (11). 

The more than fourfold ratio of deliv- 
eries is itself potentially useful in thera- 
py, and we have no reason to doubt that 
higher ratios can be obtained by appro- 
priately optimizing the liposome prepa- 
ration with respect to size, composition, 
and charge; by optimizing the temper- 
ature of heating; and by combining local 
hyperthermia with generalized hypother- 
mia to increase the available temperature 
range. As indicated by other experi- 
ments in which the lipid was labeled with 
[14C]DPPC (22), it may also be possible 
to include lipophilic drugs for selective 
effects analogous to those seen with the 
water-soluble MTX. 

The major limitation of this approach 
for cancer chemotherapy is that it does 
not deal with the problem of widely 
metastatic disease [unless the reported 
regression of metastases after heating of 
primary tumors (23) turns out to be a 
useful phenomenon]. In that limitation it 
is similar to radiotherapy and to local hy- 
perthermia itself. This approach might, 
of course, be applied to local lymph 
nodes in the area of a tumor, to other dis- 
eases of better-defined localization (for 
example, infections), or to widespread 
diseases of the skin (such as psoriasis), 
in which heating is feasible and systemic 
drugs such as MTX are sometimes useful 
(24). 
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state of dilute solution (1, 2). Intra- 
cellular ions are called free if their chem- 
ical state is similar to that in a water solu- 
tion at equivalent ionic strengths; other- 
wise they are regarded as bound. The 
chemical potentials of free and bound 
ions are expected to be different. Con- 
sequently, the thermodynamics of cellu- 
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Various Environments: Application to Frog Blood Cells 

Abstract. The edge spectrum is a sensitive probe of local chemistry. Edge spectra 
of potassium in various chemical environments were measured, and each environ- 
ment gives a unique edge spectrum. Hydrated potassium has a unique spectrum that 
is insensitive to counterions. Comparison of the spectra shows that the chemical 
state of potassium in cells differs appreciably from that in aqueous solutions. 
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