
(Fig. 2). Only three units had receptive 
fields that extended beyond ?50? in azi- 
muth. In elevation, the centering ap- 
peared less restricted largely because of 
the elongate shapes of the receptive 
fields. Still, there was an unequivocal in- 
crease in the representation of auditory 
space around and just inferior to the in- 
tersection of the median and visual 
planes. (ii) The receptive fields of space- 
dependent units in each hemisphere 
demonstrated a strong contralateral bias 
with the greatest representation given to 
0? to 20? contralateral (Fig. 2). Few fields 
extended farther than 15? ipsilateral. 
Thus the area of redundant representa- 
tion in the left and right hemispheres was 
limited to ? 15?, with the median plane 
receiving the greatest representation. 
(iii) Although there was a discernible 
tendency for space-dependent units from 
a single electrode track to have over- 
lapping receptive fields, the trend was 
not strong enough to confirm a system- 
atic representation of auditory space in 
field L. 

Because the receptive fields of space- 
preferring units were poorly defined and 
expanded with increasing sound in- 
tensity, specific statements regarding 
their size and distribution are somewhat 
arbitrary. Nevertheless some generaliza- 
tions can be made. Receptive field sizes 
of space-preferring units, measured at 10 
db above threshold, tended to be large 
(typically greater than 40? in azimuth 
and 100? in elevation) although their 
preferred areas were often small (usually 
less than 30? in azimuth and 60? in ele- 
vation). The distribution of these re- 
ceptive fields was similar to that of space- 
dependent receptive fields: primarily 
frontal with a strong contralateral bias. 

The emphasis given by the owl's audi- 
tory system to the frontal area (+30? azi- 
muth and +20? to -30? elevation) is not 
unlike that given by the visual system to 
the center of gaze: the number of units 
with receptive fields in this area is dis- 
proportionately large, and their fields 
tend to be small. Although the mecha- 
nism by which this "expansion of repre- 
sentation" is derived is necessarily dif- 
ferent in these two sensory systems, the 
functional consequences may again be 
improved acuity and more detailed anal- 
ysis of the stimulus. If so, then one 
would expect that the owl's spatial acu- 
ity for auditory stimuli would be maxi- 
mal within the frontal area and would 
drop off rapidly as the sound source is 
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mated the barn owl's auditory spatial 
acuity at less than 5? in both elevation 
and azimuth (3-5). Thus it is not surpris- 
ing to find units with receptive fields that 
are restricted in elevation as well as in 
azimuth. However, the mechanism by 
which elevation tuning is achieved is less 
obvious than the binaural intensity or 
time cues that are likely to determine 
azimuthal tuning. Elevation sensitivity in 
mammals (particularly in man) is thought 
to be based on the elevation-dependent 
filter properties of the external ear (11). 
To be effective, such a mechanism de- 
mands both a wide-band noise stimulus 
and a broad range of frequency sensitivi- 
ty. The owl, on the other hand, attains 
maximal spatial acuity when a target 
sound includes frequencies of only 5 to 9 
khz and is quite accurate at localizing 
even a 7-khz pure tone (4, 5). Further- 
more, although most of the units with 
small receptive fields were sensitive to 
noise bands, some were sensitive to 
tones and demonstrated marked eleva- 
tion tuning when mapped with a tone 
burst stimulus. Clearly some other 
mechanism must be involved. 

Elevation tuning in the barn owl might 
be achieved by comparing relative sound 
intensity at the two ears in the manner 
conceived for determining sound azi- 
muth. Elevation-dependent intensity dis- 
parities result from a vertical asymmetry 
in the location of the owl's ears [the left 
ear is higher than the right ear (Fig. 1) (3- 
5)], the direction of maximum sensitivity 
for the right ear being 10? to 15? higher 
than that of the left ear (12). Thus, a bin- 
aural elevation cue is available to the 
owl. It remains to be shown, however, 
that this mechanism is the one respon- 
sible for the elevation tuning of single 
units. 
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Rose and Harshbarger (1) reported 
that tiger salamanders living in a sewage 
sedimentation lagoon had a high in- 
cidence of neoplastic skin lesions (in- 
cluding cancer) and suggested a chemical 
etiology for these neoplasms. In a search 
for a chemical agent, they reported 300 
parts per million of perylene and a trace 
of benzopyrene (isomer not given) in this 
lagoon's sediment. They suggested that 
the source of perylene was related to jet 
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aircraft activity on a nearby runway. We 
believe that this is not the correct source 
of perylene in this lagoon. 

The presence of a single polycyclic 
aromatic hydrocarbon (PAH), rather 
than a complex mixture, usually in- 
dicates a natural source rather than an- 

thropogenic input (2). In fact, high con- 
centrations of perylene (and the absence 
of other PAH) have been reported for a 
number of sediments: Saanich Inlet, 
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British Columbia (3, 4); Vema Fracture 
Zone (4); Santa Barbara Basin, Califor- 
nia (5); Lake Biwa, Japan (6); Lake 
Washington, Washington (7); and the 
Amazon River (8). It is thought that per- 
ylene in these sediments results from the 
diagenesis of terrestrial pigments which 
have been rapidly deposited into a reduc- 
ing sediment. This idea also seems to ac- 
count for the presence of perylene in this 
sewage lagoon. We feel it is important 
not to perpetuate Rose and Harsh- 
barger's suggestion that perylene in this la- 
goon results from the activity of jet aircraft 
when a natural source seems more likely. 

JOHN G. WINDSOR, JR. 
ROBERT E. LAFLAMME 

RONALD A. HITES 

Department of Chemical Engineering, 
Massachusetts Institute of Technology, 
Cambridge 02139 
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Windsor et al. offer another possible 
source of perylene for the sewage lagoon 
at Reese Air Force Base and suggest that 
the diagenesis of terrestrial pigments 
seems more likely. We offered four pos- 
sibilities: a fuel spill, dumping (and sub- 
sequent removal) of asphalt into the 
lake, diesel fuel used as a mosquitocide, 
and jet exhaust. Recent conversations 
with the base entomologist confirmed 
what we had expected, that diesel fuel 
was used as a mosquitocide through 
1976. The rate of application was 56 li- 
ters per acre. Since the lake is about 30 
acres in area, the input is 1680 liters 
times two to five sprayings per year, or 
3360 to 8400 liters per year. Agreed, this 
does not account for the disproportion- 
ately high level of perylene; however, re- 
cent evidence indicates that while per- 
ylene is high, other PAH's [notably 
benz(a)pyrene] are higher than originally 
reported. The absence of tumorous ani- 
mals in other sewage lagoons not asso- 
ciated with the base (but not eliminated 
from the diagenesis of terrestrial pig- 
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Palmer and Gulati (1) demonstrated 
that frog muscle cells could accumulate 
K4 up to a concentration of 580 mM, 
while accommodating Na+ to a steady 
concentration of no more than 20 to 30 
percent of that in the external medium. 
Since according to their calculations the 
muscle cells have less than 580 mM an- 
ionic sites, they concluded that (i) (intra- 
cellular) K+ is free under all conditions; 
(ii) at most 20 percent of the cell water is 
bound, in the sense that it excludes elec- 
trolytes; and (iii) the data support the 
membrane theory, in which the cell is 
thought to represent a simple Donnan 
equilibrium, but refute the basic tenet of 
the association-induction hypothesis. 

I criticize the report of Palmer and Gu- 
lati for two reasons. First, the version of 
the association-induction hypothesis 
which they present is incorrect, and 
hence their conclusions concerning it are 
invalid. Solute distribution in living cells 
has been described in a general equation 
(2, 3) which, as applied to the intra- 
cellular K+ concentration in moles per 
liter of cell water, [K+1cw, may be written 
as 

[K+lcw = qK(CI)[Klex + [K] ad + 

[K l+ 11 + [K+l,]1 (1) [K ]ad + [ ad (1) 

where qK(cl) is the equilibrium distribu- 
tion coefficient of K+ (as chloride) be- 
tween the cell water and the external me- 
dium (4, 5); [K+lex is the equilibrium ex- 
ternal K+ concentration; and the last 
three terms refer to K+ adsorbed on 
three different types of adsorbing sites. 
Equation I hypothesizes a cell K+ frac- 
tion, indicated by the first term on the 
right-hand side, which increases linearly 
with increases of external K+ and is thus 
unsaturable. Therefore, cell K+ cannot 
be a saturable function of external K+. 
Yet Palmer and Gulati's argument 
against the association-induction hy- 
pothesis rests on their statement that it is 
a crucial prediction of the hypothesis 
"that the K content of the cell should be 
a saturable function of external K" (/). 

Second, Palmer and Gulati ignored 
relevant experimental findings, including 
their own. The evidence they ignored in- 
cludes (i) the finding that the degree of 
displacement of an accumulated cation 
such as K+ depends on the nature and 
not merely on the valence of the dis- 
placing cation, in agreement with the as- 
sociation-induction hypothesis and not 
with the Donnan equilibrium theory (6), 
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at external K+ concentrations below 2.5 
mM the cell undergoes a cooperative 
transition, shifting toward and approach- 
ing total displacement of cell K+ by Na+ 
at zero external K+ (2, 7-11). In (1) they 
presented only the range of experimen- 
tal data which indicates that at very low 
external K+ concentrations the amount 
of cell K+ does not approach zero but 
instead levels off at a constant high value 
of 150 mM, as demanded by the Donnan 
membrane theory. 

I will now demonstrate that the data 
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gether confirm the general equation for 
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the association-induction hypothesis, 
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sense that it does not dissolve any so- 
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investigation of qK(C) in cell water. The q 
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0.77, whereas that for NaCl is only 0.51 
(12). Similar values were obtained for the 
nitrate salts (13). Both sets of data show 
that the q value for K+ in this model sys- 
tem tends to be significantly higher than 
that for Na+. 

The concentration of Na+ in the cell 
water in Palmer and Gulati's experiment 
was about 20 mM at an external NaCI 
concentration of 91 mM, giving 
qNa(Cl) = 20/91 = 0.22. In our experi- 
ments, the somewhat higher value of 
0.29 was obtained. Thus, qK(I) = 0.5 
should be a reasonable value under the 
conditions of Palmer and Gulati's experi- 
ment. This value yielded the first com- 
ponent of the theoretical curve shown in 
Fig. I as the straight line labeled C. 

Adsorbed potassium. According to the 
association-induction hypothesis, fixed 
anionic sites on cell proteins (for ex- 
ample, ,- and y-carboxyl groups) in nor- 
mal cells not only provide preferential 
adsorption sites (type I sites) for K+ but 
also help to maintain cell shape and vol- 
ume by forming salt linkages with oppo- 
sitely charged sites (such as imidazole, e- 
amino, and guanidyl groups) on neigh- 
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