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tionships, are initially unstable for 
phenotype (which in ciliates is controlled 
by the macronucleus) and give rise to 
stable subclones which irreversibly ex- 
press only one allele. The available evi- 
dence is best explained by a stochastic 
model (4, 8) in which, following their 
replication, subunits are randomly dis- 
tributed at each macronuclear division. 
Thus, in an unstable heterozygote there 
are two kinds of subunits, those ex- 
pressing one gene and those expressing 
its allele. With repeated random subunit 
distribution stable subclones whose mac- 
ronuclei consist of only one type of sub- 
unit are eventually produced (9). This 
model allows calculation of the number 
of assorting units from the equilibrium 
rate of assortment (10). For all assorting 
loci, the equilibrium rate of assortment is 
experimentally the same (3) and implies 
the presence of 45 subunits in a G1 mac- 
ronucleus. The observation that assort- 
ment for all loci yields 45 subunits sug- 
gests a single common mechanism. 

Since macronuclear DNA behaves 
with haploid reassociation kinetics (11), 
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with haploid reassociation kinetics (11), 

and since G, macronuclei have an aver- 
age DNA content of 45C (12, 13), the 
conclusion that there are indeed 45 hap- 
loid subunits would appear straight- 
forward. However, macronuclear assort- 
ment also provides a powerful argument 
in favor of diploidy (2, 3, 6, 13, 14). Spe- 
cifically, for some loci the accumulation 
of stable subclones is significantly slower 
than expected if 45 subunits were to be- 
gin the assortment process immediately 
after conjugation. It has been argued (5, 
15) that, since for these late-assorting loci 
the products of both alleles can be de- 
tected in all clones for 30 to 50 fissions 
after conjugation, the delay must mean 
that subunits are heterozygous and, 
therefore, diploid. It was proposed that 
either a genetic mechanism to delete an 
allele or an epigenetic mechanism to re- 
press permanently one allele had to exist 
(5). 

Several attempts to reconcile the dip- 
loidy implied by late assortment with the 
concept of haploid subunits have been 
made, but none has been successful (13, 
16-18). The hypothesis that 23 diploid 
subunits might in some way mimic the 
assortment of 45 haploid subunits is in- 
consistent with the random nature of as- 
sortment (8, 19). 

The resolution proposed here is based 
on the results of cytofluorimetric mea- 
surement of the DNA content of G2 mac- 
ronuclei of heterozygous cells (20, 21). 
For the first 50 fissions after conjugation 
the mean DNA content of G2 macronu- 
clei is 132C (Fig. 1). This is considerably 
more than the 90C found in older cells 
and is sufficient DNA for 66 haploid sub- 
units in a G1 macronucleus. The impor- 
tance of these subunits is made clear in 
Figs. 2 and 3. Figure 2 shows that when 
the ratio of types of subunits is close to 
1: 1 at the initiation of assortment, the 
accumulation of stable subclones (also in 
a 1: 1 ratio) is initially slower than for 
other ratios. For ratios that are close to 
1: 1, as are the ratios observed for 
stable types for all late-assorting loci (3), 
the accumulation of stable types is a di- 
rect function of the number of subunits 
(Fig. 3). For 66 subunits there is an addi- 
tional delay of 10 to 15 fissions in the ac- 
cumulation of stable subclones as com- 
pared to the assortment of 45 subunits. 

It is our contention that these addition- 
al subunits early in the life cycle are suf- 
ficient to account for the reported delay 
in assortment. Figure 3 shows the report- 
ed proportions of stable subclones for all 
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curring codominant alleles are available 
(22). Despite the fact these proportions 
represent small numbers of stable sub- 
clones, the agreement with the assort- 
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ment of 66 subunits is generally ex- 
cellent. The agreement is more impres- 
sive when these proportions are 
compared with the results of computer 
simulation which can show the variabili- 
ty inherent in the assortment process. 
These simulations show (Fig. 3), first, 
that there can be considerable variation 
with respect to the appearance of a small 
number (arbitrarily chosen to conform to 
most of the reported assortment experi- 
ments) of stable subclones and, second, 
that the proportion of stable subclones at 
50 fissions can also vary considerably. 
With the exception of the P-l locus, all of 
the reported proportions are consistent 
with the assortment of 66 subunits. The 
exceptional P-1 assortment is not ob- 
served in all cases. In a study previous to 
the one shown in Fig. 3 (14), stable sub- 
clones were found to appear much ear- 
lier, but the data were too incomplete to 
include in Fig. 3. The difference between 
these two reports is difficult to rational- 
ize (23), but it may be the result of either 
experimental design (24) or other pecu- 
liar properties of the P-1 alleles (25). Re- 
gardless of the explanation, we do not 
consider this one apparent exception to 
be sufficient grounds for rejecting the 
conclusion that for late-assorting loci the 
assortment process begins early after 
conjugation (26). 

Although the presence of 66 subunits 
can account for the late assortment of 
some loci, it is necessary to explain why 
for other loci stable subclones appear 
early in the life cycle. It is significant that 
for all early-assorting loci the ratio of 
stable types of subclones deviates signif- 
icantly from 1: 1 (3). Such asymmetry 
means that the starting ratio of types of 
subunits must also be asymmetric (10), 
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Fig. 1. The DNA content of G2 macronuclei 
for the first 50 fissions after conjugation. Ordi- 
nate values are calculated with the G2 micro- 
nucleus being used as a 4C standard (13). Bars 
are 95 percent confidence limits, and the solid 
line is least-squares regression of the means 
(Y = 0.046X + 131.1). The control culture 
was approximately 150 fissions after con- 
jugation. 
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Fig. 2. The theoretical accumulation of stable 
subclones from unstable heterozygotes with 
increasing clonal age. Each curve represents a 
different starting ratio of types of subunits. 
Values were obtained by raising the appropri- 
ate matrix [equation 3 in (10)] to the appropri- 
ate number of powers. 

and, as shown in Fig. 2, the greater the 
asymmetry, the earlier the appearance of 
stable subclones. However, increasing 
asymmetry also means that the kinetics 
of early assortment become largely inde- 
pendent of the total number of subunits 
(27). Therefore, so long as the ratio of al- 
leles is highly asymmetric, early appear- 
ance of stable subclones is expected 
whether the number of subunits is 45 or 
66 early in the life cycle. 

Therefore, we contend that for all loci 
the assortment process begins shortly af- 
ter conjugation. The need to invoke dip- 
loidy to explain late assortment thus no 
longer exists. 

The most reasonable alternative to the 
diploid subunit is an arrangement of ge- 
netic material that behaves as a haploid 
set of genes. The argument that subunits 
cannot be smaller than haploid sets of 
genes (16, 17) is simple (2). If subunits 
were, for example, individual genes or 
chromosomes, independent, random dis- 
tribution at macronuclear division would 
result in aneuploidy and therefore great- 
ly increase cell mortality. Since it is well 
established that clones of T. thermophila 
can be kept in culture for decades with- 
out loss of vigor that is attributable to the 
macronucleus (28), there must be a more 
ordered arrangement of genetic material. 
The most likely arrangement is as func- 
tionally haploid subunits; this arrange- 
ment would be consistent with biochemi- 
cal data (11), quantitative measurements 
of macronuclear DNA content (12, 13), 
and the identity of equilibrium rates of 
assortment (3). 

The mechanism which forms haploid 
subunits must account for the variation 
in ratios of alleles. Three observations 
are pertinent. 

1) The asymmetry of allele ratios is 
normally directional. In the best-studied 

case, the locus for the H immobilization- 
antigen, the four alleles can be ordered 
with respect to the proportion of stable 
subclones produced (29). When all pos- 
sible heterozygotes are compared, sub- 
clones expressing HE are much more fre- 
quent than those expressing any of the 
other alleles; similarly, HA subclones are 
more frequent than Hc or HD. 

2) Meiotic coupling relationships ap- 
pear not to be maintained in the pheno- 
type of fully assorted macronuclei (6, 
14). In dihybrids for two linked loci, four 
phenotypic classes are produced in equal 
numbers. 

3) A small portion (no more than 10 to 
15 percent) of micronuclear DNA se- 
quences are not included in a fully devel- 
oped macronucleus (30). As in other cili- 
ates (2), these sequences are apparently 
not needed by the amitotic macronucleus 
and are discarded during macronuclear 
development. 

We suggest that during macronuclear 
development the chromosomes contrib- 
uted by each gametic nucleus undergo 
extensive (somatic) recombination or 
fragmentation, or both, after which new 
linkage groups are assembled. These 
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Fig. 3. Expected and observed accumulation 
of stable subclones. The two theoretical 
curves for 1:1 starting ratios for 45 and 66 
subunits were calculated as in Fig. 1. Ob- 
served proportions are those reported for loci 
for which codominant alleles are available: 
E-1 and E-2 esterase (14); P-1 phosphatase 
(16); T ciliary antigen (34); TAT (E.C. 2.6.1.5; 
L-tyrosine:2-oxoglutarate aminotransferase); 
NADP-MDH (E.C. 1.1.1.40; L-malate: 
NADP-oxidoreductase); and NADP-IDH 
(E.C. 1.1.1.42; L-isocitrate:NADP oxidore- 
ductase) (35). For each computer simulation a 
model in which each subunit is independently 
replicated and randomly distributed to new 
macronuclei was used (8). In each of the ten 
simulations shown, the starting ratio was 
33:33, and a total of 128 computer-generated 
clones was monitored. For each simulation 
two parameters were recorded: the fission at 
which a total of two stable subclones was 
reached and the proportion of stable sub- 
clones at 50 fissions (plotted at 49 fissions for 
clarity). 
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may be composite chromosomes (31) 
each consisting of a haploid set of genes 
or, alternatively, they may be smaller 
units that behave as a larger linkage unit 
at macronuclear division, perhaps 
through attachment to a common site on 
the nuclear membrane (32). During the 
formation of new linkage units some 
DNA sequences may be eliminated, and 
others may form heteroduplexes which 
lead to gene conversion. Since the be- 
havior of H alleles implies that not all as- 
pects of the process are random, we sug- 
gest that early-assorting loci are located 
near fragmentation or recombination 
sites which are particularly prone to gene 
conversion or gene conversion-like 
events (33). Tests of these ideas require 
further biochemical characterization of 
macronuclear development, particularly 
with respect to restriction-like endo- 
nucleases, further characterization of the 
mechanism of macronuclear division, 
and construction of detailed maps of 
both micronuclear and macronuclear 
genomes. 
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Abstract. Female Octopus hummelincki lays eggs, broods them, reduces its food 
intake, and dies after the young hatch. Removal of both optic glands after spawning 
results in cessation of broodiness, resumption of feeding, increased growth, and 
greatly extended life-span. Optic gland secretions may cause death of most cephalo- 
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