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tionship. 

Sensory surfaces project to mamma- 
lian neocortex in orderly topographic 
fashion. Sensory surfaces associated 
with behavioral specializations receive 
expanded representation, for example, 
the human and monkey hand, and the 
snout of the pig and coatimundi (1). Dif- 
ferential cortical representation may 
merely reflect differential innervation of 
the sensory surface or may be the con- 
sequence of an additional cortical adap- 
tation. 

In the mouse somatosensory sys- 
tem, cortical representation of the dif- 
ferent whiskers may be described in 
terms of "peripheral scaling," that is, 
the number of cortical neurons per whis- 
ker is directly proportional to the periph- 
eral innervation density (2). In the visual 
system, peripheral scaling describes the 
representation of the visual field (or reti- 
nal surface) in striate cortex of the cat (3) 
but not the rabbit (4). In primates, the 
central portion of the visual field re- 
ceives a greatly expanded representation 
in striate cortex (5-7). Investigators dis- 
agree, however, as to whether this is 
solely because of increased ganglion cell 
density near the center of the retina (8) 
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or whether the cortex provides addition- 
al "magnification" (9). The present 
study demonstrates that in the owl mon- 
key, Aotus trivirgatus, the representa- 
tion of the center of the visual field is ex- 
panded much more than might be ex- 
pected from the distribution of retinal 
ganglion cells. This strongly suggests 
that, in primates, striate cortex is even 
.more specialized than the retina for cen- 
tral vision. 

We defined magnification in a given 
portion of a neural structure as the pro- 
portion of the structure devoted to the 
representation of a particular visual field 
zone divided by the proportion of the vi- 
sual field represented (7, 10): 

N(Aq \,M 2) + Ntot 
M(>,qb2) = N/, + N 0- (1) 

A(01,02) + Atot 

where M(01,02) is the magnification for 
the representation of the zone between 
two isoeccentricity contours of radii (, 
and 02 with the center of gaze at the ori- 
gin; N(0 ,02) is the number of cells with- 
in the representation of that zone in a 
given structure; Ntot is the number of 
cells in the structure; and A(0,,42) and 
Atot are the area of the zone and the total 
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area of the visual field, respectively. For 
structures where cell density is invariant 
with respect to eccentricity, volume 
measurements yield equivalent values 
for magnification, and where the thick- 
ness of the structure also does not 
change as a function of eccentricity, 
magnification may be calculated on the 
basis of surface area. 

We calculated magnification in striate 
cortex of the owl monkey using a three- 
dimensional model of the brain con- 
structed on the basis of serial sections 
and receptive field data from a previous 
electrophysiological mapping study (11). 
These results were compared to calcu- 
lations of magnification for the ganglion 
cell layer of the owl monkey retina (12) 
based upon ganglion cell counts along 
both horizontal and vertical meridians 
made from whole mounts by Webb and 
Kaas (8). The owl monkey is an excellent 
subject for studying quantitative rela- 
tions between representations of the vi- 
sual field in different structures because: 
(i) the ganglion cell layer is thin enough 
to permit cell counts from whole 
mounted retinas; (ii) ganglion cells are 
not displaced about a fovea as they are in 
most other higher primates; (iii) the ratio 
of rods to cones does not change as a 
function of eccentricity (13), implying 
equivalent (normalized) magnification 
functions for scotopic and photopic vi- 
sion; (iv) the topographic representa- 
tions of the visual field have been deter- 
mined for more structures of the owl 
monkey visual system than for any other 
primate (14, 15); and (v) its relatively 
smooth brain makes it possible to map 
the cortical visual areas more accurately 
in the owl monkey than in other species 
with more convoluted neocortices. 

The expanded representation of the 
center of the visual field in owl monkey 
striate cortex cannot be attributed solely 
to peripheral scaling (16). While magnifi- 
cation decreases monotonically as a 
function of eccentricity in both retina 
and striate cortex, the decrease is con- 
siderably more gradual in the retina, and 
cortical magnification for the central 10 
degrees greatly exceeds retinal magnifi- 
cation (Fig. 1); that is, the proportion of 
the cells in striate cortex devoted to cen- 
tral vision is much larger than the com- 
parable proportion of retinal ganglion 
cells. Functionally, this suggests that, in 
primates, striate cortex is even more 
specialized than the retina for processing 
information concerning the center of the 
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information concerning the center of the 
visual field. Anatomically, this means 
that the ratio of retinal ganglion cells to 
neurons in striate cortex increases with 
eccentricity. More specifically, the rela- 
tion between magnification for corre- 
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Magnification in Striate Cortex and Retinal Ganglion 
Cell Layer of Owl Monkey: A Quantitative Comparison 

Abstract. Magnification, the relative size of the neural representation of a portion 
of the visualfield, decreases more rapidly with increasing visual field eccentricity in 
striate cortex than in the retinal ganglion cell layer of the owl monkey (Aotus tri- 
virgatus); the proportion of the cells in striate cortex devoted to central vision is 
much larger than the comparable proportion of retinal ganglion cells. Magnification 
in striate cortex is a power function of magnification in the retinal ganglion cell layer. 
A formula for convergence (ganglion cells to cortical neurons) follows from this rela- 
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sponding portions of striate cortex and 
the retinal ganglion cell layer is describ- 
able by a power function (Fig. 2): 

Mc(012,) = aMR(01,42)235 (2) 

where Mc is the magnification for striate 
cortex, MR is the magnification for the 
retinal ganglion cell layer, and a is the 
proportionality constant. Malpeli and 
Baker (9) have recently suggested that a 
similar relation exists between retinal 
ganglion cell density and magnification 
(cubic millimeters per steradian) in 
striate cortex of the rhesus monkey. They 
were forced, however, to compare retinal 
cell counts from rhesus monkey to results 
for striate cortex (7) which represented a 
composite of four species (baboon, 
rhesus, cynomolgus, and vervet) (17). 

It follows from our definition of magni- 
fication and the observed relation be- 
tween retinal and cortical magnification 
that the ratio of ganglion cells to striate 
neurons is a power function of the area 
per ganglion cell (18): 

NA ( 1,2) _k A(0 14,2) 1.35 (3) 

N(7(0X4)2) lNR(-,2) 

where NR and Nc are the numbers of reti- 
nal ganglion cells and striate cortical 
neurons, respectively, and k is the pro- 
portionality constant. A recent finding in 
the rhesus monkey (19) implies that al- 
though some primate retinal ganglion 
cells send collaterals to the superior col- 
liculus, all ganglion cells send axons to 
the lateral geniculate nucleus (LGN). 
Nearly all the cells in the primate LGN 
project to striate cortex (20). Therefore, 
Eq. 3 describes anatomical convergence 
in the retino-geniculo-striate system, 
that is, the mapping of the retinal gangli- 
on cell layer onto striate cortex. Con- 
vergence depends on eccentricity and 
thus on retinal area per cell. This may 
have implications for the study of the de- 
velopment of these connections. Experi- 
ments on the development of somatosen- 
sory and visual cortex suggest that por- 
tions of sensory surfaces compete for 
cortical representation (21). Our findings 
further suggest that in the developing 
primate retino-geniculo-striate system, 
competitive advantage decreases with 
eccentricity resulting in increased con- 
vergence. It would be of interest to know 
how such differential convergence is ac- 
complished morphologically in terms of 
the organization of the neuropil at genic- 
ulate and striate levels and how this is 
reflected physiologically in changes in 
receptive field size. 

The present results and those of recent 
physiological mapping studies (15, 22) 
suggest that in primates, each topograph- 
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Fig. 1. Magnification in striate cortex and the 
retinal ganglion cell layer as a function of ec- 
centricity. Values shown are for portions of 
retina and striate cortex corresponding to rep- 
resentations of concentric zones, each 10 de- 
grees wide, in the visual field from 0 to 60 de- 
grees and of the remainder of the visual field, 
the zone from 60 to 100 degrees. 

ically organized visual structure may be 
unique in its differential magnification of 
the visual field. This is indicative of spe- 
cialization of function in these struc- 
tures. There exist particularly large dif- 
ferences with respect to magnification in 
the third tier of cortical visual areas. In 
the dorsolateral crescent of the owl mon- 
key, approximately 75 percent of the 
area is devoted to the visual field zone 
from the center of gaze to 10 degrees, 
while only 4 percent of the medial area is 
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Fig. 2. Magnification in striate cortex as a 
function of magnification in the retinal gangli- 
on cell layer. Values shown are for portions of 
retina and striate cortex corresponding to rep- 
resentations of concentric zones, each 10 de- 
grees wide, in the visual field from 0 to 60 de- 
grees and of the'remainder of the visual field, 
the zone from 60 to 100 degrees. 

devoted to the representation of this 
zone compared with 31 percent of striate 
cortex. Behavioral techniques are now 
available for the control of fixation dur- 
ing presentation of eccentric stimuli in 
monkeys (23). This makes possible psy- 
chophysical experiments in which stimu- 
lus eccentricity is an independent vari- 
able. More accurate specification of the 
relation between magnification and ec- 
centricity at different levels of neural 
processing may permit determination of 
the structure involved in a perceptual 
task on the basis of psychophysical data. 

Note added in proof. Our findings ex- 
plain the results of recent autoradio- 
graphic studies (24, 25). After intraocular 
injection of tritiated proline, trans- 
neuronal labeling in foveal (dorsal) 
striate cortex is much less dense than in 
peripheral (calcarine) striate cortex in 
both squirrel monkeys and owl mon- 
keys. This is because the ratio of gangli- 
on cells to cortical neurons increases 
with eccentricity. In addition, degenera- 
tion caused by lesions of the LGN is less 
dense in dorsal striate cortex than in the 
calcarine fissure (25). These results and 
those of Malpeli and Baker (9) indicate 
that differential convergence in the pri- 
mate retino-geniculo-striate system is ac- 
complished in two steps: between retina 
and LGN and again between LGN and 
striate cortex. 

JOEL MYERSON 
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Panhandling as an Example of the Sharing of Resources Panhandling as an Example of the Sharing of Resources 

The study of panhandling by Lockard 
et al. (1) provides a good example of how 
the ethological approach can be used in 
field studies of human behavior. How- 
ever, there are some difficulties in inter- 
preting their data. 

Of the two studies reported, the first 
was conducted in the spring, the second 
in the fall. Lockard et al. concluded that 
there was a possible sex-by-season inter- 
action since males were overall more 
successful in the spring than they were in 
the fall and since females were more 
successful than males in the fall. How- 
ever, this finding is confounded. (i) The 
male confederates for the fall study were 
the same as those employed in the 
spring, but the females had not been 
previously employed. The amount of ex- 
perience the confederates had could cer- 
tainly affect the outcome of a request. 
(ii) The types of targets were different in 
the two studies in that family groups 
were also included in the fall study. 
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From their second study only, it may be 
concluded that a possible sex-by-season 
interaction can be observed in pan- 
handling. To generalize further, as the 
authors appear to do, would imply a 
four-way interaction: sex-by-season-by- 
target-by-experience. 

Lockard et al. interpret nonfamilial 
sharing in terms of reciprocal altruism. 
In using altruism as an explanation, they 
indicate that giving a panhandler money 
is adaptive for the human species under 
certain conditions and important for sur- 
vival. There are severe difficulties with 
this interpretation. Trivers (2) has noted 
that altruistic behavior is characterized 
by a relatively small cost to the donor 
and a great benefit to the recipient. If one 
considers the experimental manipula- 
tions of Lockard et al., this condition 
does not appear to be met. It is not 
evident why only a dime was used as the 
amount requested. Aronson and Carl- 
smith (3) have argued that experiments 
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designed to assess social processes must 
contain a balance of mundane and experi- 
mental realism. This means that the sub- 
jects must take the experimental context 
seriously, which these subjects apparent- 
ly did. It also means that the experimen- 
tal context must correspond to actual 
social processes as the subject is likely to 
view them. It is not reasonable to as- 
sume that a significant number of sub- 
jects in this experiment would view giv- 
ing a dime to a panhandler as of great 
cost to them while greatly benefiting the 
panhandler. Even if the dime were given 
out of sympathy and that sympathy 
viewed as reciprocal altruism, one must 
still be cognizant of the cost-benefit ratio 
involved, as a variety of studies have 
shown [cited in (2)]. Further, reciprocal 
altruism is behavior that increases the 
fitness of both individual organisms and 
the social group, rather than increasing 
the fitness of one organism at the ex- 
pense of another. Further, they do not 
provide a clear connection between an 
increase in fitness and the responses of 
their subjects. 

Families were less willing targets than 
other groups, a phenomenon accounted 
for by Lockard et al. by the concept of 
kin selection. However, Wilson (4, p. 
587) has argued that such a process in- 
volves the selection of genes from one or 
more individuals favoring or disfavoring 
the survival and reproduction of rela- 
tives (who are not offspring) possessing 
the same genes by common descent. 
Lockard et al.'s experiment does not 
present a situation in which there is 
great expense to the donor that would 
decrease his fitness while increasing that 
of the recipient (4). The experimental 
procedure is not at all analogous to the 
relevant processes. An explicitly social 
psychological interpretation of altruism 
that emphasized the motivational aspects 
of the targets' responses would be more 
appropriate. Lockard et al. do note that 
there are social psychological explana- 
tions for the refusal of groups to give a 
panhandler the requested dime (5). There 
are more cognitive explanations, which 
are difficult to relate to comparative re- 
search on the sharing of resources and to 
discussions of the evolution of sharing 
among humans. However, few other in- 
terpretations seem reasonable in light of 
the experimental design and the data 
reported. 

Given the range of contexts within 
which panhandling can occur and the 
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Given the range of contexts within 
which panhandling can occur and the 
genetic diversity of the human species, it 
would not be unreasonable to presume 
that the responses of targets to pan- 
handlers would vary as physical loca- 
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