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H-Y antigen predicts that presence of 
H-Y should be correlated with presence 
of at least rudimentary testis regardless 
of karyotype or phenotypic sex. From 
this perspective, the genetics of primary 
(gonadal) sex determination is a simple 
matter: In the presence of the gene that 
confers H-Y antigenicity, the indifferent 
embryonic gonad becomes a testis; in the 
absence of this gene, the gonad develops 
as an ovary. But, as the following dis- 
cussion will show, the genetics of prima- 
ry sex determination and of H-Y antigen 
expression is perhaps rather more 
subtle. 
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tion), (ii) the observation that the Sxr 
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According to this proposal, H-Y anti- 
gen directs only the initial steps leading 
to differentiation of the bipotential em- 
bryonic gonad as a testis. Further male 
differentiation is imposed on the embryo 
by the action of testicular hormones, 
against the inherent tendency toward the 
female phenotype (7). 

Because secondary male sexual dif- 
ferentiation is conferred by the action of 
testicular hormones, our hypothesis con- 
cerning the testis-determining role of 
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Role of the Y Chromosome in 

Determination of H-Y Antigen 

White blood cells from human males 
with two Y chromosomes (47,XYY or 
48,XXYY) absorb more H-Y antibody 
than white blood cells from normal 
46,XY males (8). By implication then, 
the amount of H-Y antigen on the sur- 
face of a cell is directly related to the 
number of Y chromosomes in the nucle- 
us of that cell. This indicates that a ge- 
netic determinant of H-Y antigen expres- 
sion is on the human Y chromosome, but 
it does not tell us whether the determi- 
nant is a structural gene that specifies the 
primary structure of H-Y antigen or a 
regulatory gene that governs the activity 
of a structural element. The simplest ex- 
planation is that the Y-chromosomal 
H-Y gene is structural, because dosage 
effect in this case is not easily reconciled 
with the existence of a Y-situated regu- 
lator. At present there is no reason to be- 
lieve that the products of supernumerary 
regulatory genes would elicit production 
of "excess" H-Y antigen, given a single 
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structural locus or even multiple struc- 
tural loci (9). 

Further evidence that an H-Y gene 
(whether structural or regulatory) is on 
the Y chromosome comes from our 
study of H-Y antigen expression in 

patients with abnormal Y chromosomes. 
By correlating presence or absence of 
H-Y antigen with presence or absence of 
particular portions of the Y, Koo et al. 
have now obtained data which favor a 
short arm location near the centromere 
(10). In one case of 17 studied, however, 
H-Y antigen was present despite the ab- 
sence of the entire short arm of the Y, an 
indication that the H-Y locus is on the 
long arm in at least some individuals 
(10). It is perhaps noteworthy that the 
two H-Y gene loci (both near the centro- 
mere) correspond to two male-determin- 
ing regions identified by Simpson in an 
earlier survey (11). 

H-Y Antigen in XX Males and 

XX True Hermaphrodites 

Testicular differentiation and sub- 
sequent male or intersexual development 
in subjects with female sex chromo- 
somes (XX) is known in several mamma- 
lian species. For example the autosomal 
dominant Sxr (sex-reversed) causes both 
XO and XX mice to develop as pheno- 
typic, albeit sterile, males, this in the ab- 
sence of any detectable chromosome re- 
arrangement (12). As was noted above 
(4), Sxr also confers expression of H-Y 
antigen. It is then necessary to explain 
expression of H-Y antigen and dif- 
ferentiation of testis in the absence of the 
Y chromosome. It might be argued that 
the structural gene for H-Y antigen nor- 
mally resides on an autosome and that its 
activating (regulatory) gene is on the Y 
(13). In this context Sxr is a constitutive 
mutant of the autosomal testis-determin- 
ing H-Y gene although, as I have already 
stated, this argument is not easily recon- 
ciled with the increased dosage of H-Y 

antigen in males with two Y chromo- 
somes. 

Cattanach et al., who first described 
Sxr, suggest that the gene might repre- 
sent mutational acquisition of male-de- 
termining (H-Y determining) function by 
an autosomal locus or, alternatively, that 
Sxr might represent a Y-to-autosome 
translocation too small to be detected cy- 
tologically (12). If it is assumed that Sxr 
originated as a Y-to-autosome trans- 
location, then it must also be assumed 
that a chromatid rather than a chromo- 
some interchange occurred. The point is 
that Sxr/XX males are sterile, and so the 
Sxr gene can only be transmitted by car- 
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rier XY males, always along with the Y 
chromosome that was involved in the 
original translocation. If the Y chromo- 
some had donated its testis-determining 
H-Y gene, then it should have lost its tes- 
tis-determining function. In fact, this Y 
retains its ability to determine both ex- 
pression of H-Y antigen and formation of 
testes. 

Ohno has argued that the Y-chromo- 
somal testis-determining gene of mam- 
mals exists in multiple copies (14). Once 
the multiple-copy hypothesis is in- 
troduced, it is easy to reconcile Y link- 
age of testis-determining H-Y genes with 
the Y-to-autosome origin of Sxr. In this 
context, translocation of a critical num- 
ber of H-Y gene copies would result in 
both transfer and retention of testis-de- 
termining function. 

If we assume that there are multiple 
testis-determining H-Y genes, Y-to-auto- 
some translocation could also explain 
testicular development in at least some 
human XX males and XX true her- 
maphrodites (15). In our experience, 
H-Y antiserum was significantly more 
cytotoxic after absorption with white 
blood cells from XX true hermaphrodites 
than it was after absorption with white 
blood cells from normal males, in- 
dicating reduced expression of H-Y anti- 
gen on the cells of these true hermaphro- 
dites (16). This could imply Y-to-auto- 
some (or Y-to-X) translocation of some 
(but not all) H-Y gene copies (17). Al- 
though the phenomenon of Y-to-auto- 
some translocation remains to be demon- 
strated karyologically in human XX 
males or XX true hermaphrodites, cy- 
tological evidence has been provided in 
the study of a 45,X/45,X,22q+ (H-Y+) 
male, a case that is perhaps analogous to 
the situation observed in Sxr/XO males 
(18). 

Regulation of the H-Y Gene 

The Scandanavian wood lemming, 
Myopus schisticolor, is distinguished by 
an aberrant sex ratio heavily in favor of 
the female. In this rodent species, many 
XY embryos develop as anatomically 
normal, fertile females (19); ovarian dif- 
ferentiation and subsequent feminization 
proceed in the presence of an intact Y 
chromosome but in the absence of H-Y 
antigen (20). The XY-female wood lem- 
ming condition cannot be due to muta- 
tion or loss of relevant Y-chromosomal 
genes, however, because the exceptional 
females, though somatically XY, have an 
XX germ line. They cannot transmit 
their Y. In fact, the XY female condition 
is transmitted as an X-linked trait, and 

this indicates existence of an X-chromo- 
somal gene that can suppress or modify 
the activity of testis-determining (H-Y) 
structural genes (20). 

In view of the conservatism of the 
mammalian X chromosome (14), a simi- 
lar X-chromosomal gene may occur in 
other mammalian species, including the 
human (21). Whereas XO rodents are fer- 
tile females, XO humans are sterile fe- 
males with streak gonads. Thus, we can 
predict the familial occurrence of a hu- 
man X-linked condition in which af- 
fected individuals, 46,XY, develop as 
H-Y- phenotypic females with streak go- 
nads (pure gonadal dysgenesis) (22). 
Sporadic cases of pure gonadal dysgene- 
sis could arise as a consequence of spon- 
taneous mutations of the hypothetical X- 
linked regulatory locus. If it is assumed 
that a single H-Y structural locus exists, 
then mutation at this locus could also ac- 
count for sporadic cases of pure gonadal 
dysgenesis. If, in contrast, the Y-linked 
H-Y structural locus occurs in multiple 
copies, then loss of a sufficient portion of 
these copies should also affect expres- 
sion of H-Y antigen and, by inference, 
differentiation of the testis. Indeed, one 
of the products of any Y-to-autosome or 
Y-to-X translocation is a defective Y 
chromosome, and XY gonadal dysgene- 
sis with some virilization of the streak 
gonads in the presence of "inter- 
mediate" levels of H-Y antigen might be 
explained in terms of such an event. 

But presence of H-Y antigen alone 
need not signify simultaneous presence 
of virilized gonads. Undifferentiated 
streak gonads have been found in several 
phenotypic females whose white blood 
cells expressed H-Y antigen. In one of 
these subjects, a structure resembling an 
epididymis was observed in the left go- 
nadal ridge, indicating that testicular tis- 
sue may have been present at one time, 
and karyotypic analysis of cultured cells 
from one of the streak gonads of another 
H-Y+ phenotypic female revealed what 
had been a "cryptic" 45,XO cell line on- 
ly, an indication that, in this case, lack of 
testicular differentiation was due to pres- 
ence of the aneuploid line in the pre- 
sumptive gonad during the relevant 
stages of embryogenesis. 

Other Genes 

Still, undefined "regression" of testic- 
ular structures and mosaicism may not 
account for all cases of pure gonadal dys- 
genesis in man. An example is the H-Y+ 
female who develops streak gonads and 
no internal male structures in the ab- 
sence of any detectable sex-chromosome 

SCIENCE, VOL. 198 



mosaicism. While it is difficult to rule out 
the specter of cryptic mosaicism, it is al- 
so difficult to envision any morphogenet- 
ic function of H-Y antigen that is inde- 
pendent of a specific plasma membrane 
receptor (23). And given a receptor, it is 
necessary to postulate a gene that codes 
for its structure. But once the concept of 
a gene that codes for an H-Y antigen-re- 
ceptor is introduced, we are confronted 
with the possibility (or perhaps the inevi- 
tability) of mutation of this gene. Let us 
assume that such a mutation occurs in an 
otherwise "normal" 46,XY embryo. 
H-Y antigen would be present, but tes- 
ticular differentiation could not proceed 
normally, and the affected individual 
(H-Y+) would be expected to develop 
streak gonads exhibiting some or no 
virilization, depending on any residual 
ability of the mutated receptor to bind 
H-Y antigen (or on any residual ability of 
the gonad itself to virilize in the absence 
of an "ovarian inducer") (24). 

Conclusion 

Although H-Y antigen is not of itself 
sufficient to guarantee masculinization of 
the indifferent gonad, its presence seems 
necessary in order for normal testicular 
differentiation to occur. Thus, genetic or 
environmental factors that affect the ex- 
pression and action of H-Y antigen prob- 
ably affect normal development of the 
gonad as well. In the context of our 
foregoing discussion, some of these fac- 
tors can be classified as follows: (i) muta- 
tion or loss of H-Y structural determi- 
nants, (ii) position effects resulting from 
translocation of H-Y structural genes, 
(iii) mutation of H-Y activating genes, 
and (iv) mutation of genes that specify 
plasma membrane receptors for H-Y an- 
tigen. It is perhaps appropriate to men- 
tion that just as expression of H-Y anti- 
gen does not always signal testicular dif- 
ferentiation, absence of H-Y does not al- 
ways signal normal ovarian differenti- 
ation (which is dependent, so far as we 
know, on the presence of two X chromo- 
somes in man). 

The ultimate value of H-Y antigen 
serology as a diagnostic measure re- 
mains to be determined. Certainly H-Y 

antigen expression implies presence of 
Y-chromosomal genes and simultaneous 
presence of streak gonads, or testes, but 
its expression in blood cannot preclude 
the presence of ovaries in a female or 
intersexual patient with XX/XY sex 
chromosomal mosaicism, for example. It 
is sufficient to say that at present H-Y 

antigen serology can serve as a valuable 
adjunct to more routine karyologic and 
endocrinologic measures, and that, in 

conjunction with these, study of H-Y an- 

tigen may ultimately broaden our under- 

standing of both normal and abnormal 
sexual differentiation not only in man, 
but in mammals generally. 
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