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Trichromatic Vision in the Cat 

Abstract. Many cat retinal ganglion cells (types X, Y, and W) have inputs from 
three separate cone systems. Those with peak sensitivites at 450 and 555 nanometers 
have been previously shown. A Xmax cone with a peak sensitivity of 500 nanometers 
can be differentiatedfrom other cones by spectral sensitivity andfrom rods by recep- 
tivefield differences, functioning above rod saturation levels, and by cone-rod breaks 
in the dark-adaptation curves. The similarity of the three-cone cat retina to the extra- 
macular retina of the rhesus monkey suggests that the cat may have photopic tri- 
chromatic vision. 
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The original electrophysiological dem- has remained unresolved. In the search 
strations of color discrimination in the for new data, we have examined the reti- 
t by Granit (1) were later questioned, na by electrophysiological techniques 
gely because no equivalent psycho- and have found abundant evidence for 
ysical evidence could be found (2). three separate cone systems at the gan- 
me success was later achieved in glion-cell level. 
lining cats to discriminate colors after A Maxwellian-view optical system 
ny trials (3, 4). Recently Daw and was used in order to provide the neces- 
arlman showed some opponent color sary intensity for spectrally limited back- 
sponses in the lateral geniculate with ground illumination as well as spatially 
0-nm and 555-nm cone systems, al- localized test patterns. A simple projec- 
ugh neurons connected to the 450-nm tion system was added to an optical stim- 

ne system were found only rarely (4). ulator previously described by Wagner 
he discrepancy between the abundance et al. (7). The animal preparation and re- 
color mechanisms found by Granit cording methods were conventional. 

d the paucity or limited range of such Cats were anesthetized with ether, and 5 
-chanisms as reported by others (4-6) percent lidocaine was applied to all in- 

cisions and pressure points. Paralyzing 
agents, gallamine triethiodide and cu- 

4.0- ,- rare, were introduced into a cannulated 
1 - ?\\ \forelimb vein. The animal was intubated 

3.0 - , --_, and then artificially ventilated with a 
` ~" '% ', mixture of 70 percent nitrous oxide and 

' \- \' 30 percent oxygen. An application of 1 
2.0 - 2 o o 

percent atropine dilated the eye and par- 
? O * ? ? " alyzed accommodation. The eye was im- 

10o - * mobilized with a retaining ring sutured to 
* the sclera. Levick-style tungsten-in-glass 

o _I_ _l_ I I I microelectrodes (8) were advanced into 
400 450 500 550 600 650 the eye through an incision in the sclera 

Wavelength (nm,) in order to make extracellular recordings 
g. 1. Spectral response curves from retinal from isolated retinal ganglion cells. Vig- 
iglion cells. Inputs from cone systems with orously responding "off"- (or "on"-) 
ak sensitivities (amax) of 450, 500, and 555 c c w h o ( 

as well as the 500-nm rod system. All center cells which had on (off) inhibition i as well as the 500-nm Amax rod system. All 
ee cone systems (0, on-surround, light- to a spot flashed in the center were clas- 
apted X cell; *, on-center, light-adapted Y sified as X if they maintained a response 
1; and A, on-surround, light-adapted W to a centered light spot (on center) or 
1) can be found at photopic light levels well dark spot (off center), as long as the light ove rod saturation (11), but the rod system 

on-surround, dark-adapted W cell) is was on; they were classified Y if their re- 
nd only at low light levels after prolonged sponse was phasic, that is, if the firing 

rk adaptation. For the X cell, 0.0 log units returned to a maintained level in 2 sec- 
sensitivity equals 9.0 x 1013 quanta cm-2 onds or less. These classifications are 
-l (38 ,uW cm-2 at 500 nm) with a Wratten based on the scheme used by Stone and er No. 15 background at 6.3 x 103 quanta 
-2 sec-' (20 W cm-2) on the retina. For Fukuda and by Cleland et al. (9), which 
Y cell, 0.0 log units of sensitivity equals grew from (but may not exactly corre- 
x 10'4 quanta cm-2 sec- with a Wratten spond to) Enroth-Cugell and Robson's 

er No. 47A background at 1.3 x 1013 quan- linear (X) and nonlinear (Y) terminology 
:m-2 sec-1 (5.1 /cW cm-2) on the retina. For 
W cell, 0.0 log units of sensitivity equals (10) Cells that responded sluggishly and 

3.5 x 1015 quanta cm-2 sec-1 in the light- lacked postexcitatory inhibition were 
ipted state with a Wratten filter No. 30 classified as W if they had large fields, 
kground at 4.1 x 1013 quanta cm-2 sec-1 slow activity, and low-frequency action 
i (ii) 8.8 x 10' quanta cm-2 sec-1 in the (ii) 8 x t quanta cm2 sec- in 

potentials with long time constants (9). It 
rk-adapted state with no background. All 
liation values refer only to the spectral was impossible to confidently classify al- 
id between 420 and 660 nm. most half of the cells according to these 
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rules (11). This large number of unclassi- 
fied cells represents to a large extent our 
own desire to follow the classification 
scheme rigidly. Any cell that did not cor- 
respond exactly to the rules was not la- 
beled. The problem of classification of 
retinal ganglion cells in the cat retina is a 
hotly debated subject (12), and our work 
at present does little to clarify it. 

Threshold spectral sensitivity curves 
were plotted in both the center and the 
surround with various spectral back- 
grounds. Three independent cone sys- 
tems were present with peak sensitivities 
at 450, 500, and 555 nm (Fig. 1). All gan- 
glion cells examined received input from 
at least two of these cone types. Contri- 
butions from all three cone systems were 
found in X, Y, and W classes. In general 
the contributions were additive, but in an 
occasional ganglion cell, the various in- 
puts were antagonistic. The cone type 
most often found has a spectral sensitivi- 
ty peak at 555 nm and was found in the 
center and surround of most ganglion- 
cell receptive fields. The 450-nm cone 
system can be easily isolated with an in- 
tense yellow background and was found 
in about half of the ganglion cells sam- 
pled. The spectral sensitivity of the 450- 
and 555-nm cone systems corresponds to 
those previously described (5). 

To our knowledge, the cone system 
peaking near 500 nm has not been pre- 
viously reported. Its spectral sensitivity 
is similar to that of the rod. It can be dif- 
ferentiated from the rod response be- 
cause it responds when the intensity of 
the background is well above the rod sat- 
uration level (13). Also, at photopic lev- 
els a number of cells have a prominent 
500-nm response in the surround across 
at least 2 log units of background in- 
tensity, whereas no responses from the 
antagonistic 500-nm system are evident 
in the center. After dark adaptation, 
these cells exhibit both center and sur- 
round responses with the same (rod) 
spectral sensitivity. Furthermore, some 
cells have the same spectral sensitivity in 
the light-adapted and dark-adapted 
states and produce a dark-adaptation 
curve that shows a typical cone-rod 
break (Fig. 2). In these cells, the spectral 
sensitivity curve in the light-adapted 
state has a peak absorption near 500 nm 
(Fig. 1); the spectral sensitivity after 
lengthy dark adaptation has a similar 
peak. During dark adaptation, the 
threshold sensitivity to test lights at 460, 
500, and 620 nm showed a constant rela- 
tive relationship appropriate for a spec- 
tral sensitivity peaking near 500 nm. This 
result indicates that the spectral sensitiv- 
ity remains unchanged during dark adap- 
tation, in contrast to the change in the 
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cone-rod break time as a function of the 
stimulus wavelength as shown with a 
555-nm cone and a 500-nm rod com- 
bination (dashed lines, Fig. 1). A word of 
caution is necessary at this point. We 
have assumed that the receptor respon- 
sible for the peaking of the photopic in- 
put near 500 nm is a cone; however, we 
have not anatomically identified this re- 
ceptor. It is possible, although unlikely, 
that a special type of rod could retain its 
sensitivity at photopic levels as well as 
dark-adapt in a conelike manner. The im- 
portant point is that this receptor, what- 
ever its anatomical attributes, is func- 
tionally equivalent to a cone, and we will 
denote it as such for convenience. 

The 500-nm cone system contributes 
to a majority of the ganglion-cell recep- 
tive fields, in either the center or the sur- 
round, usually in both. Usually the 500- 
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Fig. 2. Dark-adaptation curves for retinal gan- 
glion cells. The Y-cell on-center curves (0, 
500 nm; A, 620 nm) show the course of dark 
adaptation for a 555-nm Xmax cone system that 
shifts its spectral sensitivity into a 500-nm 
Xmax rod system after dark adaptation. The 
shift to the rod response is influenced by the 
wavelength of the test stimulus. With a 620- 
nm test stimulus, the cone system is more 
sensitive than the rod system for nearly 40 
minutes; with a 500-nm test stimulus, the rod 
becomes more sensitive than the cone within 
25 minutes. The W-cell on-surround dark-ad- 
aptation curves (0, 500 nm; *, 620 nm) show 
a 500-nm Xmax cone system coupled to a 500- 
nm rod system. There is no change in spectral 
sensitivity with dark adaptation, although a 
clear rod-cone break can be seen at about 35 
minutes. Changes in the wavelength of the 
stimulating light do not influence the time of 
the rod-cone break. This result confirms that 
there is not a change in spectral sensitivity ac- 
companying the shift from cone to rod types 
of ganglion-cell responses. The spectral re- 
sponses of the W cell before and after dark 
adaptation are shown in Fig. 1. The spectral 
response curve of the Y cell in the dark-ada- 
pated state resembles the dark-adapted W cell 
in Fig. 1, and in the light-adapated state, the Y 
cell in Fig. 1. The Y cell was light-adapted for 
6 minutes with Wratten filter No. 30 at 4.3 x 
1014 quanta cm-2 sec-1, and the W cell with a 
Wratten filter No. 30 at 2.6 x 1014 quanta 
cm-2 sec-1 for 15 minutes. For the Y cell, 0.0 
log units on the sensitivity scale is 3.5 x 1012 
quanta cm-2 sec-1; for the W cell, 7.0 x 1014 
quanta cm-2 sec-. The 500-nm background 
curves ? and O have been displaced upward 
0.6 log unit for comparison purposes. All radi- 
ation values refer to the spectral band be- 
tween 420 and 660 nm. 

nm and the 555-nm cone systems are ad- 
ditive (on with on, off with off), with the 
center always opposed to the periphery. 
In contrast, the 450-nm cone system ap- 
pears to lack the concentric spatial oppo- 
nency usually found in the 500-nm and 
555-nm cone systems. The 450-nm cone 
will have the same influence as the other 
cone or cones in one part (center or sur- 
round) of a receptive field; but in the oth- 
er part, it will have no influence, or an 
opponent one, to the other cones in that 
part of the receptive field. 

The differential spatial organizations 
of the contributions of these three cone 
types in retinal ganglion-cell receptive 
fields provide a basis for trichromatic vi- 
sion in the cat. In many ways the func- 
tional organization of the ganglion cells 
in the cat retina resembles that reported 
in the monkey by Gouras (14). Con- 
firmation of this interpretation is added 
by Kolb and her associates by a descrip- 
tion of the anatomical similarity between 
the cat retina and the paramacular mon- 
key retina (15). Perhaps with the tech- 
niques of chromatic and spatial isolation 
combined with dark adaptation, a similar 
triple-cone organization may be found in 
other mammals, for example, the ground 
squirrel (16), usually regarded as color- 
deficient. 
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Lines within the fin boundaries represent light pigment spots or scar 
tissue. Fig. 2 (right). Three individual porpoises followed photo- 
graphically through time. Compare these fins with the corresponding 
line drawings of Fig. 1. The fin shape and trailing edge nicks appear to 
be relatively stable. 
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