
12. In animals injected with [1251]T3, radioactivity 
from trapped plasma did not account for more 
than 3 percent of 125I found in the pituitary. In 
T4-injected animals, after washing with cold sa- 
line as described, plasma accounted for 20 to 30 
percent of the radioactivity found in the extranu- 
clear fraction and 0 to 18 percent of the nuclear 
radioactivity. The plasma contribution, P, was 
calculated as ('31I in pituitary fraction/TCA-pre- 
cipitated 131I per microliter of plasma) x (TCA- 
precipitated 125I per microliter of serum). The 
amount of T3 generated from T4 was determined 
as follows. First, a correction factor for [I25I]T3 
in nucleus or plasma derived from [125I]T3 con- 
taminating the ['25I]T4 was subtracted. This was 
computed as P x T, where P is the percentage 
of [125I]T3 in the [125I]T4 injected, and T is the 
fraction of injected ['25I]T3 found in the nucleus 
(or plasma) at a particular time after [125I]T3 in- 
jection. In experiments C and D (Table 1), the 
correction factor was 5 to 12 percent of the nu- 
clear [125I]T3 and 90 to 100 percent of the plasma 
['25I]T3. Second, the corrected [125I]T3 (derived 
from ['25I]T4 conversion) as a percentage of the 
dose of [125I]T4 was then used to calculate the 
mass of T3 produced (nanograms) as follows: 
(corrected [251I]T3/total dose of [125I]T4) x 2 x 
total dose of T4 (nanograms) x (651/777). The 
factor 2 derives from the fact that [125I]T4 (Cam- 
bridge Nuclear) was prepared by iodinating 3,5- 
diiodothyronine with carrier-free 125I. All T4 
molecules are therefore labeled at the 3' and 5' 
positions. Thus, each molecule of T3 formed 
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In slices of pancreas, insulinomas, or 
isolated pancreatic islets, it appears that 
glucose (and certain other metabolites) 
will stimulate the synthesis of proinsulin, 
relative to other proteins synthesized 
within the beta cell (1-5). For example, 
in studying [3H]leucine incorporation in- 
to rat islet proteins, Permutt and Kipnis 
(2) demonstrate that proinsulin com- 
prises 6.1 and 21.8 percent of the radio- 
active protein synthesized during in- 
cubation with low (2.8 mM) and high 
(15.3 mM) concentrations of glucose, re- 
spectively. This stimulation is accompa- 
nied by a twofold increase in total pro- 
tein synthesis and is independent of new 
RNA synthesis (2, 3). Furthermore, Per- 
mutt (4) has determined that the glucose 
stimulation brings about a twofold in- 
crease in the overall rate of polypeptide 
chain initiation, but does not alter the 
overall rate of chain elongation or the to- 
tal amount of messenger RNA (mRNA) 
available for translation. There are some 
data compatible with glucose regulation 
at the transcriptional level, but clearly 
translational modulation is present. The 
mechanisms responsible for the trans- 
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lational control of proinsulin synthesis 
remain undefined. 

We have studied the translation of the 
mRNA for bovine proinsulin in a cell- 
free protein-synthesizing system derived 
from wheat germ (6) and have found 
that it is possible to modulate proinsulin 
synthesis by changing the conditions of 
translation. These results suggest that 
proinsulin mRNA competes less effi- 
ciently for rate controlling initiation fac- 
tors. This finding suggests that, in vivo, 
increases in the overall rate of polypep- 
tide chain initiation modulate proinsu- 
lin biosynthesis in accordance with Lo- 
dish's kinetic model for translational 
regulation (7). 

For the experiments described here, 
RNA containing a polyadenylate 
[poly(A)] sequence at its 3' end was iso- 
lated from the fetal bovine pancreas (6) 
and translated in the wheat germ system 
as described by Roberts and Paterson 
(8). A sensitive double antibody immu- 
noprecipitation technique (6) was used to 
quantitate the radioactive amino acids 
incorporated into preproinsulin (6, 9). 
Figure 1A shows that the optimum Mg2+ 
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concentration for proinsulin synthesis in 
vitro was 1 mM lower than the optimum 
for total protein synthesis. Under condi- 
tions in which small variations in the 
Mg2+ concentration had no effect on total 
protein synthesis, proinsulin synthesis 
was severely depressed. This phenome- 
non was observed consistently at all 
mRNA concentrations and with different 
combinations of wheat germ lysates and 
mRNA samples. Increases in the K+ 
concentration also appeared to inhibit 
selectively the synthesis of proinsulin 
(Fig. lB). Figure 1C shows that at con- 
centrations of mRNA below 1 cg per 50- 
ul assay, total protein and proinsulin 
were synthesized proportionally. How- 
ever, above 1 ,ug/50 1A (Fig. 1, C and D) 
the synthesis of proinsulin was de- 
pressed. 

Other investigators have been able to 
modulate different proteins synthesized 
in cell-free systems by varying mRNA 
competition (10-12), polyamines (13), 
and ionic conditions (14). Many other in- 
vestigators use low background cell-free 
systems with the implicit assumption 
that the resultant translation products re- 
flect the true complexity and abundancy 
of the input mRNA population. This 
concept has not been directly proved. 
Since it is so easy to change the per- 
centage of the translation products that 
react with proinsulin antiserums, it is 
difficult to determine the proportion of 
the mRNA population coding for pro- 
insulin. These results argue against the 
indiscriminate extrapolation of cell-free 
translation data to estimate mRNA 
concentration. 

Our results are similar to those ob- 
tained by McKeehan (11) in a study of 
globin chain synthesis in a reconstituted 
translation system. He found that the 
concentrations of mRNA, ribosomal 
subunits, different initiation factors, 
Mg2+, and K+ all affect the ratio of a- to 
/3-globin synthesized. Lodish (15) and 
Lodish and Jacobson (16) had previously 
shown that P-globin mRNA initiates 
polypeptide chain synthesis more effi- 
ciently than a-globin mRNA. McKeehan 
(11) and Lodish (7, 15) conclude that a- 
globin mRNA has a lower affinity for ac- 
tive 40S ribosomal subunits. 

Our results can be interpreted in a sim- 
ilar fashion. At low concentrations of 
mRNA, the competition for rate con- 
trolling elements is less severe and the 
proinsulin mRNA is efficiently initiated. 
With increasing quantities of mRNA the 
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trolling elements is less severe and the 
proinsulin mRNA is efficiently initiated. 
With increasing quantities of mRNA the 
translational apparatus becomes saturat- 
ed and less proinsulin is synthesized. 
Apparently, those mRNA's that are pref- 
erentially translated possess higher affin- 
ities for the relevant rate controlling ele- 
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Cell-Free Modulation of Proinsulin Synthesis 

Abstract. In vivo, glucose preferentially stimulates proinsulin biosynthesis; at 
least part of this process is independent of new RNA synthesis and is accompanied 
by increases in the overall rate of polypeptide chain initiation. The cell-free trans- 
lation of proinsulin messenger RNA is very sensitive to changes in the protein-syn- 
thesizing system. Proinsulin synthesis is preferentially inhibited by the addition of 
increasing quantities of polyadenylate-containing RNA from the fetal bovine pan- 
creas or by the addition of the drug, aurintricarboxylic acid, which blocks polypep- 
tide chain initiation. These results suggest that proinsulin messenger RNA competes 
less efficiently for rate controlling initiation factors. We propose that glucose stimu- 
lates proinsulin biosynthesis by allowing the less competitive proinsulin messenger 
RNA to be translated more efficiently. 

Cell-Free Modulation of Proinsulin Synthesis 

Abstract. In vivo, glucose preferentially stimulates proinsulin biosynthesis; at 
least part of this process is independent of new RNA synthesis and is accompanied 
by increases in the overall rate of polypeptide chain initiation. The cell-free trans- 
lation of proinsulin messenger RNA is very sensitive to changes in the protein-syn- 
thesizing system. Proinsulin synthesis is preferentially inhibited by the addition of 
increasing quantities of polyadenylate-containing RNA from the fetal bovine pan- 
creas or by the addition of the drug, aurintricarboxylic acid, which blocks polypep- 
tide chain initiation. These results suggest that proinsulin messenger RNA competes 
less efficiently for rate controlling initiation factors. We propose that glucose stimu- 
lates proinsulin biosynthesis by allowing the less competitive proinsulin messenger 
RNA to be translated more efficiently. 



ments. Proinsulin mRNA appears to 
have a relatively lower binding affinity 
and thus competes less efficiently com- 
pared to other mRNA's in the same pop- 
ulation. Increasing quantities of Mg2+ or 
K+ also inhibit proinsulin mRNA trans- 
lation without greatly affecting total pro- 
tein synthesis. This may result from a 
combination of factors: (i) an alteration 
in the secondary structure of proinsulin 
mRNA; (ii) an alteration in the structure 
of some critical component of the trans- 
lation system; and (iii) a decrease in the 
overall rate of polypeptide chain initia- 
tion. Factors (i) and (ii) may affect the 
proinsulin and mRNA binding affinity for 
the rate controlling element, while factor 
(iii) will influence proinsulin chain initia- 
tion as predicted in Lodish's kinetic 
treatment (7). 

It is possible to amplify cell-free 
mRNA competition by partially blocking 
polypeptide chain initiation with aurintri- 
carboxylic acid (ATA). Figure 2 shows 
that ATA inhibition of protein synthesis 
directed by fetal bovine pancreatic 
mRNA affects proinsulin synthesis to a 
greater extent than it does total protein 
synthesis. This result supports the con- 
clusion that proinsulin mRNA is initiated 
less efficiently when mRNA is present in 
saturating concentrations. 

It is possible to correlate the evidence 
of mRNA efficiency in vitro with obser- 
vations in vivo. Sonenshein and Brawer- 
man (12) have shown that the mRNA's 
coding for the immunoglobulin light and 
heavy chains appear to compete more ef- 
ficiently when poly(A)-containing RNA 
from a mouse myeloma is translated in 
the wheat germ system. With intact 
myeloma cells, treatments (that is, star- 
vation, exposure to actinomycin D, and 
hypertonicity) that reduce the rate of 
polypeptide chain initiation result in the 
preferential synthesis of immunoglobulin 
chains (17). Data from experiments in 
vivo supporting our results in vitro were 
obtained by Pipeleers et al. (5). They 
found that within the rat 8/ cell the rate 
of proinsulin synthesis varies as a simple 
function of the overall rate of protein 
synthesis. Treatments that increase the 
rate of protein synthesis, that is, increas- 
ing concentrations of various carbohy- 
drates, preferentially stimulate the rate 
of proinsulin synthesis. Treatments that 
reduce the rate of protein synthesis, that 
is, changing the pH of the culture medi- 
um or replacement of Na+ with other 
monovalent cations in the presence of a 
high glucose concentration, result in a 
preferential decrease in proinsulin syn- 
thesis. A similar mathematical expres- 
sion describes both the stimulation and 
inhibition of proinsulin synthesis during 
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proinsulin and total protein synthesis in the 93% 5 

wheat germ system. (A) The concentration of 
Mg2+. Poly(A)-containing RNA from fetal bo- 0 
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the total protein synthesized. Assays (at _ 
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say; this background synthesis was not sub- 
tracted in any of the immunoassay calcula- 1.48% 

tions. The reaction mixture was treated with o 
ribonuclease, diluted with immunoassay buf- 10 15 

fer, and analyzed for the synthesis of immu- [ATA] (p.M) 
noreactive proinsulin by means of a double 
antibody immunoprecipitation (6). Four precipitates (two of which contained 10 ,tg of proinsulin 
as competitor) were used for each point; the average difference in radioactivity represents the 
specific immunoreactive proinsulin (AIRI). Only 85 ,ul (equivalent to 42.5 ,tl of the original 
reaction) of the translation products were added to each precipitate, so the total protein synthe- 
sized (e) and the AIRI synthesis (o) is based on 42.5 xl\. The percentage of the translation 
products that are proinsulin immunoreactive is shown above each point. (B) The concentration 
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were performed as described in (A). Reaction parameters were 2 mM MgCl2 and 1 /ig of mRNA 
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these changes in the overall rate of pro- 
tein synthesis. This implies that a com- 
mon mechanism is involved. Moreover, 
Pipeleers et al. (5) found two treatments 
(cycloheximide and 2,4-dinitrophenol) 
which reduce the rate of protein syn- 
thesis without affecting the preferential 
synthesis of proinsulin. These two treat- 
ments primarily influence the rate of 
elongation, and thus support the hypoth- 
esis that the rate of polypeptide chain ini- 
tiation determines how efficiently the 
proinsulin mRNA is translated. 

Lodish's kinetic model for trans- 
lational regulation (7) predicts that any 
increase in the overall rate of polypep- 
tide chain initiation will allow mRNA's 
with lower rate constants (that is, affini- 
ties) to be translated more efficiently. 
Hence, under low glucose conditions, 
proinsulin mRNA may compete (relative 
to the other mRNA's in the /3 cell) less 
effectively as a result of its lower in- 
trinsic binding affinity for rate controlling 
translation elements. This competition 
may be so severe that, at any one time, 
only a fraction of the proinsulin mRNA 
will be found engaged on an active ribo- 
some. The high concentration of glucose 
increases the overall rate of polypeptide 
chain initiation (for example, by increas- 
ing the concentrations of guanosine tri- 
phosphate) (18). This permits the less 
competitive proinsulin mRNA to be ini- 
tiated more rapidly, and mobilization of 
the proinsulin mRNA pool. This com- 
bination will account for the relative in- 
crease in proinsulin synthesis. Hence, if 
the rate of glucose oxidation within the /3 
cell regulates the overall rate of polypep- 
tide chain initiation, which in turn regu- 
lates the rate of proinsulin synthesis, 
then the /3 cell possesses a simple mecha- 
nism to replenish insulin levels following 
glucose-stimulated insulin secretion. 

Our results are clearly compatible with 
Lodish's kinetic model for translational 
regulation. However, they in no way 
prove the hypothesis, nor do they ex- 
clude the possibility that glucose modu- 
lates either the concentrations of specific 
initiation factors for proinsulin mRNA or 
the amount of proinsulin mRNA avail- 
able for translation. Experiments to test 
these possibilities await production of 
a labeled complementary DNA probe 
to measure the amount of proinsulin 
mRNA. 
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Deuterolysis of Amino Acid Precursors: Evidence for 

Hydrogen Cyanide Polymers as Protein Ancestors 

Abstract. Deuterolysis experiments suggest that hydrogen cyanide polymers rath- 
er than aminoacetonitriles are major precursors of a-amino acids obtained from 
spark reactions and other studies on chemical evolution. These results are consistent 
with the hypothesis that the original heteropolypeptides on the earth were synthe- 
sized spontaneously from hydrogen cyanide and water without the intervening for- 
mation of a-amino acids. 
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