
weeks of age. This matter requires fur- 
ther investigation. 

Interestingly, the LF-fed lipectomized 
rats developed as much total subcu- 
taneous adipose mass as their controls 
by storing a somewhat greater amount of 
lipid in subcutaneous adipocytes. Such a 
hypertrophic response to lipectomy has 
also been observed in other experiments 
(1, 5, 6). However, it is now apparent 
that a hypertrophic response to lip- 
ectomy is usually quite limited, and only 
serves to accommodate new lipid stores 
that would otherwise have been accumu- 
lated in the excised cells. In some ani- 
mals, such as the Sprague-Dawley rat, 
the degree of such possible accommoda- 
tion is probably small, while in others, 
especially the potentially obese, it may 
be quite large (1). 

We conclude from this study that the 
development of the subcutaneous adi- 
pose tissue during the first few postnatal 
weeks of the rat's life is a precisely regu- 
lated event. That is, the proliferation of 
subcutaneous adipocytes is monitored 
and adjusted. Subcutaneous adipocyte 
regulation in the rat is thus similar to the 
regulation seen in skin and liver, except 
that adipocyte regulation may terminate 
at some time shortly after weaning when 
adipocyte proliferation terminates. That 
regulation does indeed terminate is sug- 
gested by the failure of Kral (8) to ob- 
serve regeneration of inguinal fat in the 
Sprague-Dawley rat lipectomized at 15 
weeks of age. Furthermore, our previous 
failures to observe subcutaneous adipose 
tissue regeneration in the NCS/R mouse 
lipectomized at 12 days of age (6) or to 
observe regeneration of the epididymal 
fat pad in young rats and mice (5, 6) sug- 
gest that there are strain and site varia- 
tions in the phenomenon of adipose tis- 
sue regeneration and thus perhaps in 
the normal mechanisms or sequences 
of adipocyte proliferation and devel- 
opment. 

This study leads to at least two obser- 
vations which could be relevant to hu- 
man obesity. First, assuming a degree of 
similarity between human and rat, the 
existence of an adipocyte proliferation 
regulatory process suggests that the hy- 
perplastic component of human obesity 
may well be the result of a disorder in 
that process, as the hypertrophic com- 
ponent of obesity is very likely the result 
of a disorder in the process that regulates 
adipocyte size. Determining the nature 
of such regulatory disorders obviously 
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can affect adipocyte proliferation and ul- 
timate adipocyte number (3). 

In summary, we have observed com- 
plete regeneration of subcutaneous adi- 
pose tissue in rats which were lip- 
ectomized at 3 weeks of age and fed a 
high-fat diet beginning at 12 weeks of 
age. Rats fed only a chow diet achieved 
only incomplete regeneration. The re- 
stored subcutaneous adipose tissue mass 
of the HF-fed rats was equivalent to the 
subcutaneous adipose mass of controls 
in terms of both adipocyte number and 
mean lipid content per cell. Therefore, 
the proliferative processes which estab- 
lish the adipocyte population of the sub- 
cutaneous fat tissue, and the system 
which determines average adipocyte 
size, are both active and precise in their 
regulation at least until the time of wean- 
ing in the rat. How long beyond weaning 
the regulated response of regeneration 
will occur and what role dietary factors 
play in the response are questions which 
remain to be answered. 
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The hypothesis that body weight of 
mammals is regulated received experi- 
mental support as early as 1939 (1), but 
the more specific hypothesis of Kennedy 
(2) that body fat mass is regulated was 
not directly tested until the studies of 
Liebelt and co-workers in 1963 and 1965 
(3). In their studies, as well as those of 
others (4), surgical removal of adipose 
tissue in mice or rats resulted in enlarge- 
ment of remaining fat depots relative to 
those of control animals. Such findings 
were interpreted as demonstrating com- 
pensatory growth of adipose tissue and 
thus that total body fat mass of mice and 
rats is regulated. The clearest demon- 
strations of such apparently com- 
pensatory growth were in brain-damaged 
or genetically obese animals. In contrast, 
in recent experiments with normal rats 
and mice it was found that removal of 
various adipose tissue depots does not 
result in compensatory growth of re- 
maining depots (5). Thus, total body fat 
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content of rats and mice is probably not 
directly regulated, as Kennedy had sug- 
gested, but regulation of some other pa- 
rameter related to total body fat must be 
responsible for the usual stability of 
body fat. In this report we present evi- 
dence that body fat stability in the adult 
rat is achieved by means of the regula- 
tion of adipocyte lipid content (or adipo- 
cyte size), and that such regulation can 
operate by influencing food intake. 

In the young rat, increases in both 
adipocyte size and adipocyte number 
constitute normal growth of the adipose 
mass (6), but at about the time of wean- 
ing adipocyte proliferation usually 
ceases. Subsequent to weaning most adi- 
pose tissue growth occurs as the result of 
adipocyte enlargement alone (7). If 
adipocyte size were involved in the regu- 
lation of fat storage, one might expect 
that adipocytes would have a tendency 
to resist excess enlargement and that adi- 
pose tissue growth in rats after weaning 
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Surgical Removal of Adipose Tissue Alters Feeding Behavior 

and the Development of Obesity in Rats 

Abstract. Lipectomized and sham-operated rats were fed a high-fat diet to induce 
hyperphagia and rapid fat accumulation. Lipectomized rats with 25 percent fewer 
adipocytes were less hyperphagic and accumulated less fat, but their adipocytes 
remained equal in size to adipocytes of controls. A role for adipocyte size in fat 
storage regulation and food intake control is postulated. 
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Fig. 1. Distribution of lipid among the adipose depots of 5?2-month-old Osbol 
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age 19 weeks followed by 3 weeks on high-fat diet, or LF until age 13 wee 
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would be restrained in direct relation to 
the strength of that tendency. 

Rats which rapidly accumulate adi- 
pose mass when fed a highly palatable 
diet were studied under conditions in 
which one component of capacity to 
store fat, adipocyte number, was first di- 
minished by lipectomy. We reasoned 
that if adipocyte resistance to enlarge- 
ment exists, surgical reduction of a rat's 
adipocyte number would diminish its ca- 
pacity for fat storage. A lipectomized rat 
would thus not be able to accumulate as 
much fat as an intact rat. 

Under certain circumstances, a deficit 
in fat storage capacity might be of only 
minor consequence to a rat. Most rats do 
not develop large fat stores when fed on- 
ly a laboratory chow diet. Thus, the stor- 
age capacity of the remaining depots in a 
chow-fed lipectomized rat may be suf- 
ficient to accommodate as much lipid as 
is stored by nonlipectomized control 
rats. However, if the rat is fed a very pal- 
atable high-fat diet on which it normally 
becomes hyperphagic and obese, re- 
duced fat storage capacity might serve to 
limit the degree to which it can become 
obese. Consequently, a lipectomized rat 
might eat as much food as an intact rat 
when fed only laboratory chow, but it is 
less likely to do so when fed a highly pal- 
atable high-fat diet. 

Osbome-Mendel rats were used for 
this study since they are known to be- 
come unusually hyperphagic and obese 
when presented with a high-fat diet (8). 
In the first experiment, both subcu- 
taneous inguinal fat depots were re- 
moved from each of 35 23-day-old male 
rats. At 55 days of age, 75 to 80 percent 
of each epididymal fat pad was also re- 
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the rat accumulates large amounts of fat, 
as on the HF diet, the restraints become 
operative. Perhaps the Osbome-Mendel 
rat can become so obese on a high-fat 
diet precisely because adipocyte size re- 
straints are inoperative when the rat is 
relatively lean. In the Swiss mouse and 
the Sprague-Dawley rat, there appears to 
be far less flexibility in adipocyte size 
following lipectomy (5) and these ani- 
mals are not as easily fattened by feeding 
of a high-fat diet. 

Figure 1 also shows the site-to-site 
variations in fat accumulation in both 
LF- and HF-fed rats. Lipectomized rats 
fed LF achieved total body fat equiva- 
lence with control rats by significantly 
increasing the weights of all their remain- 
ing fat depots relative to the weights of 
the depots of the control rats (mesenteric 
and retroperitoneal: P < .01; subcu- 
taneous: P < .05). In contrast, weights 
of the remaining depots were not signifi- 
cantly different between lipectomized 
and control HF-fed rats. The accumu- 
lated lipid deficit in the HF-fed lip- 
ectomized rats is thus due to a failure of 
their remaining depots to contain a lipid 
excess relative to the depots of controls. 
As the epididymal and inguinal depots of 
HF-fed control rats enlarge, the relative 
lipid deficit in the lipectomized HF-fed 
rats increases correspondingly. 

Adipose cellularity of all depots de- 
picted in Fig. 1 was measured by a pre- 
viously published method (10). Lip- 
ectomized rats had a total of 25 percent 
fewer adipocytes than controls in the dis- 
sectible depots. Lipectomized rats fed 
LF had significantly larger fat cells than 
their controls (retroperitoneal: 0.99 
+ 0.08 versus 0.70 + 0.05 jtg of lipid per 
cell; mesenteric: 0.44 ? 0.03 versus 
0.29 ? 0.02 ,tg of lipid per cell; P < .01, 
Student's t-test). However, with ad libi- 
tum HF feeding these cell size dif- 
ferences were obliterated; lipectomized 
rats fed HF for either 3 or 9 weeks had 
fat cells that were equivalent in size to 
the fat cells of their controls (for ex- 
ample, with 9 weeks of HF, retro- 
peritoneal: 1.4 ? 0.08 versus 1.5 ? 0.07 
,tg of lipid per cell; mesenteric: 
1.4 ? 0.08 versus 1.2 ? 0.09 tzg of lipid 
per cell). As suggested above, it indeed 
appears that the regulatory restraints 
which operate on the HF-fed rats to 
achieve adipocyte size equivalence be- 
tween the lipectomized and control rats 
do not operate at the relatively small 
adipocyte size of the LF-fed rats. 

As predicted, the differences in fat 
storage in HF-fed rats were closely re- 
lated to changes in food intake. Figure 2a 
depicts the mean differences in body 
weight and cumulative food intake be- 
tween the 14 lipectomized and 14 sham- 
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Fig. 2. Body weight and cumulative food intake differences between lipectomized and control 
Osborne-Mendel rats fed a high-fat diet. Control values have been set to zero. Note that the 
major food intake decline begins after 3 to 4 weeks of high-fat feeding in (a) and (b) but after only 
10 days in (c). Relative declines in cumulative food intake were significant in each of the three 
experiments (P < .05, analysis of variance). There were no significant correlations between 
food intake decline and adiposity or adipose cellularity in the lipectomized rats, but total food 
intake and total body fat were significantly correlated in both lipectomized and sham-operated 
groups (in experiment 1 the correlation coefficient r = .54 for lipectomized rats and .94 for 
sham-operated rats). 

operated rats fed HF for 9 weeks. It thus 
illustrates both the pattern with which a 
relative body weight deficit developed in 
the lipectomized rats in the first experi- 
ment, and the relative decline in food in- 
take associated with the development of 
that deficit. The body weight difference 
is not significant at any particular time 
point, presumably because body weight 
variance is large relative to the body fat 
difference between the two groups. 
However, comparison of the actual daily 
food intakes of the two groups by means 
of analysis of variance reveals that the 
food intake decline in the lipectomized 
rats is significant (F = 5.45, 1/598 d.f., 
P < .05). Furthermore, examination of 
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trophic component of at least some 
forms of obesity may thus be due to an 
abnormality in the mechanisms which 
constitute adipocyte resistance to en- 
largement. Whether there is some neural 
or humoral mediation between adipocyte 
size and feeding behavior is not known, 
but some such association now seems 
likely. 
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Exposure to loud sound can produce 
permanent damage in human and animal 
cochleas (1, 2). Recent research on the 
phenomenon of priming for audiogenic 
seizures (3, 4) and on acoustic trauma in 
young guinea pigs (5) suggests that 
young mice from certain inbred strains 
and young guinea pigs are particularly 
susceptible to acoustic trauma. The data 
in these studies do not provide any evi- 
dence on the locus of the developmental 
changes presumed to underlie the ob- 
served changes in susceptibility. The ob- 
ject of this study was to examine suscep- 
tibility of the hamster ear to acoustic 
trauma as a function of age. The data 
show that (i) young hamsters pass 
through a critical period of susceptibility 
to noise trauma and (ii) the devel- 
opmental events underlying this phe- 
nomenon appear to occur in the cochlea. 

Hamsters (Mesocricetus auratus) 
were obtained from a commercial dealer 
(6) at specific ages or were bred in the 
laboratory. Animals were exposed to an 
octave-band noise (5 to 10 khz, 125 db re 
20 tAN/m2) for 2.5 minutes at one of the 
following ages: 11, 15, 19, 23, 27, 31, 40, 
48, 55, 62, or 75 days after birth. Five 
days after noise exposure, cochlear mi- 
crophonic (CM) responses were mea- 
sured in exposed animals and in control 
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animals of the same ages. The proce- 
dures used for noise exposure and CM 
recording have been described (4) and 
will be mentioned briefly here. 

Hamsters were anesthetized with ure- 
thane (1.5 mg per gram of body weight, 
injected intraperitoneally) and placed in 
a head holder after tracheal cannula- 
tion. The ear canal was excised at the 
level of the tympanic ring, and the au- 
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Fig. 1. Mean (+ S.E.) 1.0 ,/v threshold versus 
frequency for six 45-day-old control animals 
and nine 45-day-old animals exposed to noise 
at 40 days of age. 
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Fig. 1. Mean (+ S.E.) 1.0 ,/v threshold versus 
frequency for six 45-day-old control animals 
and nine 45-day-old animals exposed to noise 
at 40 days of age. 

ditory bulla was exposed. The tip of a 
sound speculum containing a calibrated 
probe tube was sealed over the tympanic 
ring, and a silver ball electrode was 
placed onto the round window through a 
fenestra in the bulla. The intensity of 
sournd (in decibel sound pressure level) 
necessary to produce a criterion CM re- 
sponse of 1.0 /v was determined at fre- 
quencies between 0.5 and 20.0 khz. All 
surgery and CM recording were con- 
ducted using appropriate double-blind 
procedures. 

Mean thresholds at each frequency 
were determined for control and noise- 
exposed animals in each age group. Ex- 
amples in one age group are presented in 

Fig. 1. These data typify the pattern of 
threshold loss seen in all age groups in 
which significant threshold losses were 
observed (7). The difference between 
means for control and noise-exposed ani- 
mals at a given frequency provided a 
measure of threshold loss at that fre- 
quency in a particular age group. These 
measures of threshold loss (in decibels) 
were averaged over all test frequencies 
(0.5,1,3,5,9,13.5, and 20 khz) in each age 
group. Threshold loss, measured 5 days 
after noise exposure, was dependent on 
developmental age (Fig. 2A). Although 
the amount of threshold loss within a giv- 
en age group depended on frequency, the 
general relationship between threshold 
loss and age at noise exposure was simi- 
lar at all frequencies tested (7). 

It seems unlikely that a critical period 
of susceptibility to acoustic trauma has 
any adaptive advantage for the young 
hamster. Rather, we interpret the exis- 
tence of the phenomenon as indicating 
that some developmental change is oc- 
curring between 27 and 55 days of age, a 
correlate of which is enhanced suscepti- 
bility to noise-induced CM deficit, a defi- 
cit that presumably reflects permanent 
damage to the organ of Corti (8). 

It might be expected that a given noise 
exposure would not be maximally ef- 
fective in producing cochlear damage be- 
fore about 20 days after birth. Structural 
development of the hamster ear has been 
studied by Stephens (9), who reported 
that the middle and inner ear appear ma- 
ture by light microscopy at about 30 days 
after birth. At 15 days, the malleoincudal 
joint has not yet ossified, and mesen- 
chyme continues to be abundant in the 
middle ear. Thus, there is no reason to 
expect the middle-ear transmission sys- 
tem fully to function before 20 days of 
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chyme continues to be abundant in the 
middle ear. Thus, there is no reason to 
expect the middle-ear transmission sys- 
tem fully to function before 20 days of 
age. However, given the apparent struc- 
tural maturation of the ear by 20 days, 
there is no obvious reason to predict that 
the effectiveness of noise exposure in in- 
ducing threshold loss should decrease 

SCIENCE, VOL. 197 

age. However, given the apparent struc- 
tural maturation of the ear by 20 days, 
there is no obvious reason to predict that 
the effectiveness of noise exposure in in- 
ducing threshold loss should decrease 

SCIENCE, VOL. 197 

A Critical Period for Acoustic Trauma in the Hamster 

and Its Relation to Cochlear Development 

Abstract. Young hamsters pass through a developmental stage during which they 
are unusually susceptible to acoustic trauma. This sensitive period occurs after ap- 
parent structural and functional maturation of the ear and appears to be dependent 
on unidentified developmental changes within the cochlea. 
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