
field orientations reflects the correspon- 
dence of early visual inputs between the 
two eyes for moderate amounts of rela- 
tive rotation. Preliminary results from 
additional kittens suggest that even 
greater rotation (24?) may be more dis- 
ruptive of binocularity; other investiga- 
tors have reported similar results using 
large, surgically induced eye rotations 
(9) during early development. 

Controversy has arisen concerning 
whether the orientation preferences of 
visual cortical neurons are innately de- 
termined (10) or whether such prefer- 
ences directly reflect the orientations ex- 
perienced during the visual sensitive pe- 
riod (11). Our results imply the existence 
of at least some plasticity in the devel- 
opment of cells' orientation preferences. 
It is possible, however, that innate 
mechanisms favor the systematic repre- 
sentation of all orientations in the visual 
cortex, that is, orientation hypercolumns 
(12), but that visual experience is crucial 
to the alignment of the two monocular 
orientation representations. Under this 
interpretation, the goggle experiences 
served to align these patterns of orienta- 
tion representation so that the two mo- 
nocular orientations differed system- 
atically across the cortex. 
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Oscillation and Chaos in Physiological Control Systems 
Abstract. First-order nonlinear differential-delay equations describing physi- 

ological control systems are studied. The equations display a broad diversity of dy- 
namical behavior including limit cycle oscillations, with a variety of wave forms, and 
apparently aperiodic or "chaotic" solutions. These results are discussed in relation 
to dynamical respiratory and hematopoietic diseases. 
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apparently aperiodic or "chaotic" solutions. These results are discussed in relation 
to dynamical respiratory and hematopoietic diseases. 

There are a number of chronic and 
acute diseases in which a primary symp- 
tom is the altered periodicity of some 
observable; for example, the irregu- 
lar breathing patterns in adults with 
Cheyne-Stokes respiration (Fig. la) (1) 
and the fluctuations in peripheral white 
blood cell counts in chronic granulocytic 
leukemia (CGL) (Fig. 2a) (2). Previous 
theoretical studies of the control of respi- 
ration (3) and the control of hemato- 
poiesis (4) have associated disease pro- 
cesses with oscillatory instabilities in 
mathematically complex models. Here 
we associate the onset of disease with bi- 
furcations in the dynamics of first-order 
differential-delay equations which model 
physiological systems. We have two 
goals: (i) to bring to the attention of theo- 
reticians two examples from medicine of 
complex and poorly understood dynam- 
ics; and (ii) to show that simple mathe- 
matical models of physiological systems 
predict the existence of regimes of peri- 
odic and aperiodic dynamics, similar to 
those encountered in human disease. 
This work is an extension of the work of 
Li and Yorke (5), May (6), May and Os- 
ter (7), and others on the periodic and 
aperiodic behavior encountered in dis- 
crete time population models (8). 

Consider the ordinary differential 
equation 

dx dt = A x (1) 

where x is a variable of interest, t is time, 
and X and -y are positive constants giving 
the production and decay rates, respec- 
tively, of x. Then x = X/3y in the limit of 
t --> o. In many physiological systems, X 
and y are not constants but depend on 
the value of x at some earlier time (3, 4). 
Thus, the instantaneous rate of change of 
x at time t will depend on x,, the value of 
x at time (t - r). We consider two com- 
plementary examples to illustrate the ef- 
fects of allowing either X or y (but not 
both) to be nonlinear functions of x,. One 
is for the control of CO2 elimination 
while the second embodies control of 
cell production. 

In respiratory studies it has been es- 
tablished that the ventilation (V) is a sig- 
moidal function of arterial CO2 concen- 
tration (x) (9). We assume that the CO2 
response curve is V = VmXn/(On + xn), 
where Vm is the maximum ventilation, 
and 0 and n are parameters adjusted to fit 
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experimental observations (10). We fur- 
ther assume that CO2 is removed from 
the blood at a rate proportional to its 
concentration multiplied by the ventila- 
tion (3), and that the blood is a well- 
stirred fluid. Therefore we assume that 
the arterial CO2 control system may be 
described by 
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where A is the CO2 production rate, r is 
the time between oxygenation of blood 
in the lungs and stimulation of chemo- 
receptors in the brainstem, and a is a 
constant. The justification for Eq. 2 is 
heuristic: the equation reproduces cer- 
tain qualitative features of normal and 
abnormal respiration. 

As either the steepness of the CO2 re- 
sponse curve or the delay time increases, 
the steady state becomes unstable and 
low-amplitude oscillations (Fig. ib) or 
high-amplitude oscillations, in which 
there is a distinct apnea (Fig. I c), are ob- 
served. Similar breathing patterns are 
observed clinically (1, 3, 11). Cheyne- 
Stokes respiration is often found in 
patients who have increased delay times 
between oxygenation of the blood in the 
lungs and stimulation of chemoreceptors 
in the brainstem, and also increased sen- 
sitivity to C02 (11). A phenomenon anal- 
ogous to Cheyne-Stokes respiration in 
humans has been induced in dogs by in- 
serting a circulatory delay between the 
heart and the brain (12). There are other 
pathological conditions in which highly 
irregular breathing patterns are ob- 
served; for example, apneic breathing in 
premature infants (13). We have not 
found a parameter range for Eq. 2 in 
which such complex patterns exist. 

It is possible to analyze the stability of 
Eq. 2 in the neighborhood of the steady 
state (where dx/dt = 0). If at steady 
state x0 is the CO2 concentration, V0 is 
the ventilation, and So is the slope of the 
CO2 response curve, then assuming pa- 
rameters in the normal range (14), the in- 
stability condition can be computed (15) 
and is 

t>7r (3) 
2Ar 

For the parameter values cited we find 
instability for So > 7.44 liter/min 
mm-Hg. At the instability the period 
of the oscillation is 4r (15). These ana- 
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lytical results are similar to results found 
by numerical integration of more com- 
plex models of the respiratory system 
(3). Because of the crudeness of our 
mathematical model and experimental 
difficulties encountered in measuring res- 
piratory control parameters, detailed nu- 
merical comparisons with experiments 
are difficult. However, our value for r is 
comparable to that found in Cheyne- 
Stokes patients (11). Our critical value 
for S0 lies above the generally accepted 
normal range of 2 to 6 liter/min ? mm-Hg 
(9), and is comparable to sensitivities 
found in Cheyne-Stokes patients (11). 
The experimentally observed period of 
Cheyne-Stokes breathing is of the order 
two to three times the estimated r (11, 
12). 

The dynamics of Eq. 2 illustrate famil- 
iar notions with respect to the destabili- 
zation of equilibrium points by time 
delays and the appearance of oscillatory 
behavior. In the next example a new 
phenomenon analogous to chaos in finite 
difference equations is found. 
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The regulation of hematopoiesis is the 
object of intense research (16). A pool of 
totipotent stem cells provides unipotent 
stem cells to the granulo-, erythro-, and 
thrombocytic lines. In each line uni- 
potent stem cells supply cells to a num- 
ber of nonproliferating differentiation 
compartments in the bone marrow be- 
fore the release of a mature white blood 
cell, red blood cell, or platelet into the 
blood. 

We consider a homogeneous popula- 
tion of mature circulating cells of den- 
sity P. There is a significant delay r be- 
tween the initiation of cellular produc- 
tion in the bone marrow and the release 
of mature cells into the blood. Since the 
nature of the regulatory mechanisms in 
hematopoiesis is controversial, we con- 
sider two different possibilities 
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where 3o, 0, n, and y are constants. In 
Eq. 4a the production is a monotonic de- 
creasing function of PT while in Eq. 4b 
the production is a single-humped func- 
tion of P, (17). 

Equations 4a and 4b display different 
qualitative dynamics. In both cases, as r 
is increased an initially stable equilibri- 
um becomes unstable and stable periodic 
solutions appear (Fig. 2b). In addition, in 
Eq. 4b as T is further increased a se- 
quence of bifurcations in the dynamics is 
found. These bifurcations appear to be 
strictly analogous to bifurcations found 
in first- and second-order finite dif- 
ference equations (5-8). With these in- 
creases in T in Eq. 4b we observed cycles 
with periods approximately 2, 4, 8, and 
16 times the original one, as well as an 
apparently chaotic or aperiodic regime 
(Fig. 2c). In the aperiodic regime the 
choice of the initial conditions deter- 
mines the evolution of the solutions, al- 
though for a given set of parameters the 
solutions always have the same bounds. 
In the midst of the aperiodic regime of 
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Fig. 1 (left). (a) Spirogram of the breathing pattern of a 29-year-old man. This breathing pattern, in which there is regular waxing and waning of 
inspiratory volume separated by distinct apneic spells, is termed Cheyne-Stokes respiration. The figure is redrawn from (1), which should be 
consulted for the original data and for other illustrations of respiratory oscillations. (b and c) Double precision numerical solutions of Eq. 2 using a 
predictor-corrector integration scheme, an integration step size of 0.01, an initial condition on x of 39 mmHg, and other parameters as described 
in (14). Decreases in integration step size, as well as computations using a Runge-Kutta scheme, convince us that the behaviors shown here and in 
Fig. 2, b and c, represent the properties of Eqs. 2 and 4b and are not due to numerical artifact. (b) A low-amplitude oscillation in ventilation V(t) is 
found by integrating Eq. 2 with So = 7.70 liter/min * mm-Hg. (c) A large-amplitude oscillation results from numerically integrating Eq. 2 with 
So -= 10.0 liter/min * mm-Hg. Fig. 2 (right). (a) Circulating white blood cell counts versus time in a 12-year-old girl with diagnosed chronic 
granulocytic leukemia. The period of the oscillation is about 72 days [redrawn from (2)]. (b) Numerical solutions to Eq. 4b obtained as detailed in 

Fig. 1, with an initial condition on P of 0.10, y = 0.1 per day, /0 = 0.2 per day, and n = 10. Parameter estimation for Eq. 4b is described in (18). 
With r = 6 days, the equilibrium point P = 0 is unstable and the solution of Eq. 4b has a low-amplitude oscillation with a period of 20 days. (c) 
With the time delay increased to 20 days, the numerical solution of Eq. 4b now displays an aperiodic pattern. 
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Eq. 4b, stable but complex oscillations, 
which appear to be analogous to the 
stable oscillations of periods 3 and 6 
found in finite difference equations, have 
also been observed over limited parame- 
ter ranges (18). 

The solutions of Eqs. 4a and 4b are es- 
pecially intriguing when considered in 
light of the clinical literature, where peri- 
odic fluctuations in circulating levels of 
platelets, red blood cells, and white 
blood cells have been observed. In par- 
ticular, normal and pathological gran- 
ulocyte production has been intensively 
studied (16, 19, 20). In normal healthy 
adults, circulating levels of granulocytes 
are either constant or show a mild oscil- 
lation with a period of 14 to 24 days (16). 
Cyclical neutropenia is a disease charac- 
terized by spontaneous oscillations in 
granulocyte numbers from normal to 
subnormal levels with a period of about 
21 days (19). In some patients suffering 
from CGL circulating granulocyte num- 
bers display large-amplitude oscillations 
with periodicities ranging from 30 to 70 
days, depending on the patient (Fig. 2a) 
(20). In a number of CGL patients the 
cellular generation time is significantly 
increased, which would lead to an in- 
crease in r (21). These long-term oscilla- 
tions (Fig. 2a) occur in the absence of 
any clinical intervention. The variability 
in the maxima in Fig. 2a and the irregu- 
larities of the white blood cell counts 
over the last 100 days suggest, but not 
conclusively, that sequences of bifurca- 
tions may occur in patients with CGL. 

We have shown how simple mathe- 
matical models of two physiological con- 
trol systems can reproduce the qualita- 
tive features of normal and pathological 
function. We believe there is a large 
class of dynamical diseases, two of 
which have been considered here, char- 
acterized by the operation of a basically 
normal control system in a region of 
physiological parameters that produces 
pathological behavior (22). Our analysis 
suggests the following approaches: (i) 
demonstrate the onset of abnormal dy- 
namics in animal models by gradual tun- 
ing of control parameters; (ii) gather suf- 
ficiently detailed experimental and clini- 
cal data to determine whether sequences 
of bifurcations similar to those found 
here actually occur in physiological sys- 
tems; and (iii) attempt to devise novel 
therapies for disease by manipulating 
control parameters back into the normal 
range. 
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synthesized in the conversion of linoleic 
acid to C20: 4 and a precursor of prostag- 
landin E, (PGE1) (4). The fatty acid C20: 4 

is a precursor of prostaglandin E2 (PGE2) 
(4). Since only small amounts of C20:3 
are found in tissues (1), the amount of 
C20: 3 that is available for PGE, biosyn- 
thesis could be markedly diminished by 
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Fatty Acids and Their Prostaglandin Derivatives: 

Inhibitors of Proliferation in Aortic Smooth Muscle Cells 

Abstract. Prostaglandins are synthesized from eicosa-8,11,14-trienoic acid and 
eicosa-5,8,11,14-tetraenoic acid by smooth muscle cell cultures from guinea pig 
aorta. Production is inhibited by indomethacin. The precursor fatty acids and their 
prostaglandin derivatives inhibit proliferation of the cell cultures. The relative avail- 
ability of fatty acids for prostaglandin biosynthesis may represent a control mecha- 
nism for cell proliferation. 
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