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Quantum Statistics and Li( 
Helium-3-Helium-4 Mixti 

The quantum statistics of Bose and Fermi ma 
themselves in the behavior of liquid helium mixl 

E.G. D. 

All substances, when cooled down 
from the gaseous state and then lique- 
fied, solidify so that they are all solids at 
the absolute zero of temperature. There 
are only two exceptions to this rule: the 
two helium isotopes, helium-4 and heli- 
um-3. 

Helium-4, instead of becoming a solid 
after liquefying, shows a phase transi- 
tion, at 2.2?K, to another liquid state. 
Keesom and Wolfke, who discovered 
this transition in 1928 (1), called this 
state He II, in contrast to the higher-tem- 
perature liquid state, which they called 
He I (2). This phase transition is quite 
different from the usual ones like con- 
densation or solidification in that there is 
no latent heat-that is, there is no abrupt 
change in entropy S-nor does an abrupt 
change in volume V occur (Fig. 1). It is a 
more subtle transition where only abrupt 
changes in the temperature (T) deriva- 
tives of V and S occur. Thus there is a 
discontinuity in the thermal expansion 
coefficient (1/V)(aV/aT)p, where P is 
pressure, as well as in the specific heat 
CV = (1/T)(aS/3T)v on going through the 
transition. Because of the characteristic 
shape of a graph of the specific heat as a 
function of temperature near the transi- 
tion point, which resembles the Greek 
character X, this transition is often called 
a lambda transition or a second-order 
transition to distinguish it from the usual 
first-order transition (Fig. 2a). 

In 1938 Kapitza (3) and independently 
Allen and Misener (4) discovered that 
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ior of these mixtures different from that 
sketched above, and how this was first 
surmised on theoretical grounds, later 
confirmed experimentally, and finally led 
to the discovery of a new type of critical 
point, which is of considerable theo- 
retical interest, as well as to the 3He-4He 
dilution refrigerator, the leading low- 
temperature instrument of today, which 
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is of great practical importance. It is also 
interesting, from a historical point of 
view, to see how the actual situation re- 
peatedly differed from the one generally 
expected on theoretical grounds. 

To appreciate this development and 
the role of quantum statistics in particu- 
lar in the behavior of liquid 3He and 4He 
and their mixtures, it is useful to realize 
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Fig. 1. Density n = N/V plotted as a function of temperature T at constant pressure for (a) a 
second-order transition (like the lambda transition in liquid 4He) where n is a continuous func- 
tion of T at the transition temperature Tx, and (b) a first-order transition (like the condensation of 
gaseous to liquid 4He) where n is a discontinuous function of T at Ttr. 

Fig. 2. Specific heat at 
constant volume c, 
plotted as a function 
of the absolute tem- 
perature T for (a) 4He 
and (b) an ideal Bose- 
Einstein gas. The 
shape of the curve in 
(a) resembles the 
Greek letter X. In (a) 
Tc and in (b) T, is the 
transition temper- 
ature. 
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that this was a continuation of a theo- 
retical approach to the behavior of heli- 
um at low temperature that goes back to 
Einstein (12). Bose (11) had proposed in 
1924 a way of counting the possible 
states of light quanta (photons) in an en- 
ergy interval that led to Planck's radia- 
tion law rather than Wien's law. The lat- 
ter is obtained when the classical count- 
ing procedure of Boltzmann is used. The 
essential difference between the two 
methods was that in Bose's counting the 
fact that all light quanta are identical was 
explicitly taken into account, while in 
Boltzmann's counting it was ignored. 
Einstein, deeply convinced as he was of 
the analogy between light and matter, 
immediately applied Bose's counting to 
the (identical) particles of an ideal gas. 
We say now in general that particles 
which obey Bose-Einstein statistics are 
bosons. An ideal gas of particles obeying 
this statistics is called an ideal Bose (or 
Bose-Einstein) gas. 

When studying the thermodynamic 
properties of such an ideal Bose gas, 
Einstein discovered what we now call 
Bose-Einstein condensation. That is, a 
macroscopic number of gas particles 
"condenses" into the single-particle 
ground state, and since-for a very large 
system-a particle is essentially at rest in 
this ground state, a finite fraction of the 
particles will become "thermally in- 
active." The temperature Tc at which 
this "condensation" occurs can easily 
be estimated on the basis of general con- 
siderations. Bose statistics comes into 
force strictly when the wave packets that 
describe the individual gas particles start 
to overlap (Fig. 4); that is, when the 
characteristic De Broglie wavelength 
X(T) of the wave packets at temperature 
T is of the same order of magnitude as 
the average interparticle distance d. 
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Fig. 3. Phase diagrams in the temperature- 0? , / 
concentration (T-x) plane at constant pressure 0 0.2 0.4 0.6 0o8 i( 
for (a) 3He-4He mixtures (around 1960); (b) a binary mixture of an ideal Bose-Einstein and an - x 
ideal Fermi-Dirac gas; and (c) a hard-sphere Bose-Fermi mixture at a pressure such that the density of the mixture roughly corresponds to that 
of 3He-4He mixtures (solid curve) and 3He-4He mixtures (present). Here Tx is the transition temperature of the hard-sphere or helium mixtures 
and x is the concentration of fermions or 3He, respectively. 
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Thus X(Tc) = Xc satisfies the simple con- 
dition AX/d 1. Now the temperature de- 
pendence of X can be estimated by using 
De Broglie's relation X = hlip, wherepf is 
the average momentum of the particles 
at temperature T and h is Planck's con- 
stant. This can also be written X - hl 
(mkT)112, where m is the mass of the gas 
particles and k is Boltzmann's constant, 
since p2/2m = 3kT/2 or p2 p2 - mkT. 
Imagining the volume V divided into 
cubes of side d, with one particle per 
cube, then Nd3 = V, where N is the total 
number of particles. Therefore XA/d 
n /3Xc, where n = N/V is the number of 
particles per unit volume, so that Bose- 
Einstein condensation will occur in an 
ideal gas at a temperature determined by 
the relation nXc3 ; 1 [the exact relation is 
nXc3 = 2.612 if Xc = hl(2-rmkT)1/2]. 

Einstein also noticed that the effect of 
the Bose-Einstein condensation on the 
thermodynamic properties of the gas 
would be very dramatic. For instance, at 
fixed T < Tc the pressure would remain 
constant for all V below a certain critical 
Vc instead of increasing with decreasing 
V. Einstein assumed that 4He would fol- 
low Bose-Einstein statistics. [We would 
now say that 4He follows Bose-Einstein 
statistics because it consists of an even 
number of elementary particles, but Ein- 
stein thought that all atoms and mole- 
cules followed Bose-Einstein statistics 
(16).] Since gaseous 4He at its critical 
point (5.2?K) is "only" five times less 
dense than an ideal Bose-Einstein gas 
with Tc = 5.2?K, effects of the Bose sta- 
tistics should be noticeable in the behav- 
ior of 4He near its critical point in view of 
the dramatic nature of these quantum 
statistical effects. This idea was further 
developed by London (17, 18), who stud- 
ied the properties of the ideal Bose-Ein- 
stein gas of particles with the same m 
and the same density n as liquid 4He. He 
found Tc = 3.13?K, a value close to the 
value for the lambda transition in liquid 
4He. Although London realized that liq- 
uid 4He was far from an ideal gas be- 
cause of the strong interparticle forces 
between 4He atoms, he argued that the 
quantum statistical effects in liquid 4He 
might be so strong that in spite of these 
strong interparticle forces the effect of 
Bose-Einstein statistics would still be 
manifest and liquid 4He might exhibit a 
behavior echoing in some way that of an 
ideal Bose-Einstein gas. 

In this picture, then, the Bose-Einstein 
condensation temperature Tc of the ideal 
Bose-Einstein gas is in some way analo- 
gous to TA, the (lambda) transition tem- 
perature in liquid 4He. In detail, the be- 
havior of an ideal Bose gas is quite dif- 
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Fig. 4. Overlapping wave packets describing particles 1 and 2. The average De Broglie 
wavelength X that characterizes the wave packets is of the order of the average distance d 
between particles. 

ferent from that of liquid 4He: the specif- 
ic heat does not show a lambda-like 
behavior near Tc and the pressure of liq- 
uid 4He as a function of volume is, of 
course, not constant for T < Tx (Fig. 
2b). 

Helium-3-Helium-4 Mixtures and Ideal 

Quantum Gas Mixtures 

A strong support for the idea that Bose 
statistics is important for understanding 
the properties of liquid 4He-in particu- 
lar for the He I-He II transition-was the 
fact that liquid 3He showed no such tran- 
sition. In order to understand this one 
should recall that there is another way of 
counting the possible states of a gas of 
identical particles, which differs from 
that of Bose. This way of counting was 
proposed in 1926 by Fermi (14) and Dirac 
(15) and is such that the particles satisfy 
Pauli's exclusion principle. Such parti- 
cles are said to obey Fermi-Dirac statis- 
tics and are called fermions. An ideal gas 
of particles obeying this statistics is 
called an ideal Fermi (or Fermi-Dirac) 
gas. We now say that 3He follows Fermi- 
Dirac statistics because it consists of an 
odd number of elementary particles, and 
has a (nuclear) spin of 1/2. 

The next question is whether one can 
understand the lambda line or the de- 
crease of the Bose-Einstein transition 
temperature TC(x) with the concentration 
x of the fermions in a mixture of an ideal 
Bose-Einstein and an ideal Fermi-Dirac 
gas. This was answered in the affirma- 
tive independently by Goldstein in Los 
Alamos in 1948 (19, 20) and by Heer and 
Daunt in 1951 (21). The explanation is 
extremely simple and follows directly 
from the discussion given earlier. In the 
mixture in volume V, Bose-Einstein con- 
densation of the Bose component will 
occur when nBXc3 _ 1, where nB is the 
density of the Bose component of the 
mixture. But sinceB nB = (1 - x), where 
n is the overall number density of the 
mixture, and Xc ~ h/(mkTc)1/2, one has 
immediately that T(x) - (1 - x)213 or 

Tc(x)/Tc(O) = (1 - x)2/3, which not only 
shows a decrease of Tc with x, but even 
agrees qualitatively with what is ob- 
served in 3He-4He mixtures if one identi- 
fies Tc with T,. It is also clear that in a 
mixture of an ideal Bose-Einstein gas 
and an ideal Fermi-Dirac gas, Tc(x) will 
continue to decrease with increasing x 
until Tc(1) = 0 at T = 0?K (Fig. 3b). 
Thus no trace of an instability or phase 
separation occurs in this ideal gas mix- 
ture, and one could, of course, wonder 
how a phase separation could ever occur 
in such a mixture in view of the absence 
of any interaction between the two com- 
ponents. 

Helium-4 and Helium-3 and the 

Hard-Sphere Quantum Gas 

In order to have a chance of under- 
standing the phase separation in liquid 
helium mixtures on the basis of quantum 
statistics, the model has to be made more 
realistic and at least some aspects of the 
interparticle forces have to be in- 
troduced. 

This had been done by Bogolubov (22) 
in 1947 and in particular by Yang and 
Lee (23) in 1957, when they computed 
the properties of a gas of hard spheres 
that follow Bose statistics. Yang and Lee 
found that the hard-sphere Bose gas 
tended to differ from an ideal Bose gas in 
the same way as liquid 4He did. While 
the hard-sphere Bose gas still exhibits 
the Bose-Einstein condensation phe- 
nomenon, it also possesses elementary 
excitations not like those of free (nonin- 
teracting) particles but like those of 
quantized sound waves (phonons). This 
leads to a low temperature specific heat 
Cv T3 as in liquid 4He, instead of 
Cv ~ T312 as in an ideal Bose gas. In ad- 
dition, the hard-sphere Bose gas does 
not have a constant pressure as a func- 
tion of volume for T < Tc. 

That a hard-sphere Bose gas (or a 
hard-sphere Fermi gas) might be a not 
too bad model for liquid 4He (or liquid 
3He) was further argued by Yang (24), 
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following earlier considerations of Lon- 
don (18). The attractive part of the inter- 
particle potential of the helium atoms is 
relatively weak while the repulsive part 
is very strong. Moreover, the inter- 
particle distance in liquid 4He and 3He is 
relatively large; for instance, the volume 
of 4He under its own vapor pressure is 
about three times as large as it would be 
if 4He were a classical liquid because of 
the huge zero-point energy of the parti- 
cles. As a result, the average attractive 
potential field in which a helium atom 
moves between two successive colli- 
sions, due to the repulsive part of the in- 
terparticle potential, is in first approxi- 
mation a constant negative potential 
field, which can be ignored as far as the 
motion of the atoms is concerned. Thus 
the attractive part of the interparticle po- 
tential can in first approximation be ac- 
counted for by a constant (negative) out- 
side potential field, which does not influ- 
ence the thermal properties of the liquid 
at all, but only contributes to the total 
energy of the system. If one then in addi- 
tion idealizes the repulsive part of the in- 
terparticle potential to that between hard 
spheres, the hard-sphere Bose (or Fermi) 
gas model for liquid 4He (or 3He) is ob- 
tained. It should be kept in mind that if 
one believes-as we do here-that quan- 
tum statistics plays a dominant role in 
the behavior of liquid 4He or 3He as well 
as their mixtures, one should compare 
the hard-sphere Bose or Fermi gas as 
well as the Bose-Fermi mixtures with the 
corresponding helium liquids at corre- 
sponding temperature T and (overall) 
density n-that is, at corresponding val- 
ues of nX3-so that in both systems the 
quantum statistical effects are equally 
enforced. 

The hard-sphere Bose-Fermi mixture 
studied by van Leeuwen and myself (25- 
28) in 1960 and 1961 can be described as 
follows. We consider NB hard spheres 
that follow Bose statistics, with mass 
mB, diameter a, and spin 0, and NF hard 
spheres that follow Fermi-Dirac statis- 
tics, with mass mF, the same diameter a, 
and spin 1/2, in a common volume V. 
Since the diameters of the two com- 
ponents of the mixture are the same, we 
consider an isotopic mixture. However, 
the derived properties of the mixture do 
not depend critically on this or on the 
value of the mass ratio v = mF/mB, 
which we take to be equal to 3/4. 

In order to compute the thermody- 
namic properties of this mixture and in 
particular the phase diagram in the T-x 
plane (x = NF/N, where N = NF + NB), 
we first have to find the energy eigen- 
values Ej of the system, wherej summa- 
rizes all quantum numbers that charac- 
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Table 1. Comparison of hard-sphere and heli- 
um mixtures. Symbols: Tx is the lambda tem- 
perature at x =0; Tc is the temperature and xc 
the concentration of the top of the coexist- 
ence curve; xi(0) is the residual concentration 
of the fermions at 0?K; and a, b, and 8 are 
constants defined in the text. 

Quantity Hard-sphere Helium 
mixtures mixtures 

Tc/Tx 0.492 0.405 
XC 0.602 0.669 
xi(0) 0.125 0.064 
aT,2 3.24 1.50 
bTh3,2 0.429 3.45 
I8/T 0.120 0.327 

terize the energy eigenstates. Then we 
can compute the canonical partition 
function Z = ,e EkT, from which the 
Helmholtz free energy F(T, V, NB, NF) 
and subsequently the Gibbs free energy 
per particle g(T, P, x) can be derived 
from G(T, P, NB, NF)/N. According to 
thermodynamics, then, the stability of 
the mixture for phase separation can be 
determined by investigating a2g/ax2. For, 
if a2g/ax' > 0 the mixture is stable, while 
if 2g/Olx2 < 0 it is unstable. The proper- 
ties of the coexisting phases then follow 
from the thermodynamic conditions of 
phase equilibrium-that the temperature 
T, pressure P, and chemical potentials 
.JIB and /F of the Bose and Fermi com- 
ponents in the two coexisting phases 
must be equal. 

The difficulty is, of course, the deter- 
mination of the Ej, something that is at 
present completely out of reach of an 
exact solution. Therefore, one can at 
best obtain approximate eigenvalues Ejl 
and hope that they incorporate some of 
the most important features of the exact 
Ej. To find these Ej1 one might consider 
applying perturbation theory, using the 
interparticle interaction as a perturbation 
on the ideal gas energy eigenvalues Ej0, 
which are known. However, such a 
straightforward perturbation theory can- 
not be carried out. For, the hard-sphere 
gas-where the interaction prevents two 
particles from approaching each other 
closer than a-cannot be considered as a 
small perturbation in the sense of usual 
perturbation theory on an ideal gas, 
where there is no such restriction. How- 
ever, at sufficiently low densities and 
temperatures, when the extension of the 
interparticle potential field a is small 
compared to both the average distance of 
the particles (na3 < 1) and the average 
De Broglie wavelength of the particles 
(a/X < 1), the disturbance the inter- 
molecular potential field will cause to the 
free motion of the particles will be small. 
In that case the potential field can be 
considered as a small perturbation. The 

effect can then be taken into account in 
first approximation by considering the 
deviations of the motions of the particles 
in the hard-sphere gas from those in an 
ideal gas due to spherically symmetric 
(S-wave) scattering of pairs of particles. 
Under these conditions S-wave scatter- 
ing is determined by the total scattering 
cross section-that is, the hard-sphere 
diameter a only. 

This leads then to an expression 
Ej' = Ej? + Ej'(a), where Ej'(a) is the 
contribution to Ej1 proportional to a. 
Substituting Ejl into the partition func- 
tion Z and, for consistency, keeping no 
terms of higher order than a, we obtain 
expressions for F, G, and g that are cor- 
rect to order a. These expressions differ, 
depending on whether the Bose com- 
ponent of the mixture is condensed or 
not. In the approximation used here the 
Bose-Einstein condensation of the Bose 
component occurs in the hard-sphere 
mixture at the same point as in the ideal 
Bose-Fermi mixture, the corrections 
being of higher than first order in a. 

If we now investigate the stability of 
the mixture with respect to phase separa- 
tion, we find that the mixture is stable 
above the Bose-Einstein transition point 
for all T, P, and x; that is, the mixture is 
always stable above the lambda line. 
However, we also find that below the 
lambda line, for densities (pressures) 
above a certain critical density (pres- 
sure)-where the critical density nc is 
given by n,a3 = (7r/3)(v + 1/v)-3, which 
for v = 3/4 is - 1/8-the homogeneous 
mixture is unstable for a sufficiently low 
temperature and a sufficiently high fer- 
mion concentration x. This instability 
leads to a phase separation into two co- 
existing phases, one of which is relative- 
ly rich in fermions and has a normal (not 
condensed) Bose component, while the 
other is relatively rich in bosons and has 
a superfluid (condensed) Bose com- 
ponent. The critical point for this phase 
separation at a given P > Pc-that is, the 
point in the T-x plane where the phase 
separation starts-is situated on the 
lambda line. Decreasing the temperature 
(keeping P constant) leads to an increas- 
ing concentration difference between the 
two coexisting phases. At the absolute 
zero of temperature the phase separation 
remains incomplete, however, for all 
pressures P > Pc. That is, at 0?K a pure 
3He phase coexists with a 3He-4He mix- 
ture. It is interesting to note that while 
the occurrence of phase separation is in- 
timately connected with the Bose-Ein- 
stein condensation of the Bose com- 
ponent of the mixture, the incomplete 
phase separation at 0?K is due to the Fer- 
mi-Dirac statistics of the Fermi com- 
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ponent. A mixture of two hard-sphere 
Bose gases, or of a hard-sphere Bose gas 
with a hard-sphere gas following Boltz- 
mann's statistics, would show a com- 
plete phase separation at 0?K. 

A phase diagram for the hard-sphere 
Fermi-Bose mixture at a density com- 
parable to that found in helium mixtures 
(where na3 - 0.365) is drawn in Fig. 3c, 
showing a solubility of the fermions in 
the bosons at 0?K of about 12.5 percent. 
It will be clear that this phase diagram 
differs from the one in Fig. 3a in at least 
two important aspects: the critical point 
for the phase separation is on the lambda 
line, and the phase separation remains 
incomplete at 0?K. All attempts to reme- 
dy this difference failed since one can 
show, for instance, that the theoretical 
model-at least in the approximation 
used-will never lead to a critical point 
below the lambda line, but always to one 
on the lambda line. 

A solution to this dilemma came when 
Edwards et al. (29) in 1965, guided inde- 
pendently by experimental indications 
(30), discovered the incomplete phase 
separation of helium mixtures, with a 
limiting solubility of 3He in 4He at 0?K of 
about 6.4 percent. Also, in 1967, Graf et 
al. (31) discovered that for the helium 
mixtures the critical point for the phase 
separation is on the lambda line, with a 
location in the T-x plane that is not too 
different from that for the hard-sphere 
Bose-Fermi mixtures at comparable den- 
sity. 

A closer comparison of the phase dia- 
grams of the helium and hard-sphere 
mixtures reveals that they are-with one 
exception-qualitatively the same (Fig. 
3c). The coexistence curve, or locus of 
coexisting phase points in the T-x plane, 
approaches the critical point for phase 
separation linearly, both for helium mix- 
tures and for hard-sphere Bose-Fermi 
mixtures. However, the slope of the 
lambda line and that of the outer branch 
of the coexistence curve, xo(T), at the 
critical point for phase separation are not 
the same for helium mixtures, while they 
are the same for the theoretical curve. 
This equality of slope is probably not 
really true for the hard-sphere Bose-Fer- 
mi mixture, but only a consequence of 
the approximations used in evaluating 
the partition function Z. The behavior of 
the coexistence curve near 0?K is the 
same for the helium and hard-sphere 
mixtures: the outer branch behaves like 
xo(T) = 1 - bT3/2e-8T, while the inner 
branch xi(T) behaves like xi(T) = 

xi(0) + aT2. The constants b, 8, and a 
are independent of x and T and depend 
only on P. The expression for xo(T) is a 
direct consequence of the equality of the 
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chemical potentials of the Bose com- 
ponents in the two coexisting phases; the 
temperature dependence is due to the 
Bose statistics. The expression for xi(T) 
follows from the equality of the chemical 
potentials of the Fermi components in 
the two coexisting phases; the quadratic 
behavior of xi(T) as a function of T is due 
to the Fermi-Dirac statistics. A com- 
parison of numerical values for the ex- 
perimental and theoretical phase dia- 
grams is given in Table 1, which shows 
that the agreement is semiquantitative. 

Concluding Remarks 

1) At the critical point of the phase 
separation two phases become identical, 
namely the 3He (fermion)-rich normal 
phase and the 4He (bcson)-rich superflu- 
id phase. This is similar to the situation 
at the critical point for condensation, 
where the gas and liquid phases become 
identical, or at the critical point for phase 
separation in a classical binary mixture 
such as phenol and water (Fig. 4a), 
where the phenol-rich and phenol-poor 
phases become identical. But the envi- 
ronment of the critical point in helium 
mixtures is quite different from that 
found in classical binary mixtures: while 
the approach of the two branches of the 
coexistence curve to the critical point in 
a classical binary mixture is approxi- 
mately cubic (32), it is linear here (31) 
(Fig. 5). In addition, there is in this case 
a third line meeting the coexistence 
curve at the critical point: the lambda 
line. Therefore, this critical point has 
something of the character of a triple 
point, where three lines also meet. One 
could call it a tricritical point, empha- 
sizing its difference from a "normal" 

T 

a 

xc 
-X 

critical point, and one could say that at 
the tricritical point a second-order (lamb- 
da) phase transition goes over into a 
first-order transition. Such a point has al- 
so been found in phase diagrams for oth- 
er systems-for example, in the temper- 
ature-magnetization diagram of certain 
highly anisotropic antiferromagnets like 
FeCl2. A more detailed comparison of 
the behavior of the helium and the hard- 
sphere mixtures near the tricritical point 
reveals a general similarity with dif- 
ferences in detail, which might be due to 
the approximations used in the evalua- 
tion of Z for the hard-sphere mixture 
(27). 

The critical point for phase separation 
remains on the lambda line for all P > Pc 
in the hard-sphere mixtures. This is in 
agreement with what has recently been 
found by Johnson (33) and Lai (34) for 
the helium mixtures, at least up to about 
20 atmospheres. Therefore, there seems 
to be no indication that at any pressure 
P > Pc the liquid helium mixtures would 
behave as in Fig. 3a; they always show a 
tricritical point. There are indications 
that a critical point such as that in Fig. 3a 
might occur in the class of antiferromag- 
nets mentioned above (27). 

The more detailed behavior as a func- 
tion of pressure is not the same, how- 
ever, in the helium and hard-sphere mix- 
tures, neither near the tricritical point 
nor near 0?K. This is probably due to the 
very incomplete incorporation of the at- 
tractive part of the interparticle potential 
in the model. 

2) The incomplete phase separation at 
the absolute zero of temperature is the 
basis for the 3He-4He dilution refriger- 
ator. In this refrigerator, 3He is pumped 
off from the lower (3He-poor) mixture, 
which will then be replenished from the 

XC 

-1- x 

Fig. 5. Behavior near the critical point for phase separation for (a) an ordinary binary mixture 
(like phenol and water) and (b) 3He-4He mixtures. The neighborhood of the critical point is 
described in (a) approximately by a cubic equation IT - TJc- x - xC3 and in (b) by a linear 
equation IT - TcI ~ x - xcl. Also, in (b) three lines join in the critical point: the lambda line and 
the two branches of the coexistence curve. This point is now called a tricritical point. 

15 



upper (3He-rich) mixture (Fig. 6). It will 
be predominantly the more energetic 3He 
atoms in the upper mixture that will re- 
plenish the lower mixture, since a 3He 
atom has to do work to transfer from the 
upper to the lower mixture. Con- 
sequently, the more energetic 3He atoms 
will be pumped off, while the less ener- 
getic 3He atoms stay behind. In other 
words, the mixtures will cool off. By 
reintroducing the pumped-off 3He again 
in the upper mixture, a continuously op- 
erating machine can be constructed that 
can maintain temperatures of about 
0.015?K and less for extended periods of 
time (of the order of weeks) (35). The im- 
portance of the incomplete phase separa- 
tion at 0?K will be appreciated if one 
realizes that if there were complete 
phase separation at 0?K, the 3He concen- 
tration in the lower mixture would de- 
crease to zero with the temperature and 
a temperature of "only" about 0.3?K 
could be maintained. 

3) Near 0?K it is possible to calculate 
F and G to higher order in a, in fact to 
order a512, by using improved perturbed 
energy levels Ejl (26, 28). In that case the 
phonon excitations of the Bose com- 
ponent are taken into account, which 
was not the case in the earlier calcula- 
tion. This higher-order calculation con- 
firms not only the existence of a phase 
separation-in fact, the value of the criti- 
cal density for this to occur decreases, so 
that the tendency for phase separation is 
enhanced-but also the behavior of xo(T) 
and xi(T) near 0?K as quoted above. 

Such a calculation also suggests the 
possibility, in principle, of yet another 
phenomenon in the hard-sphere Bose- 
Fermi mixtures, and thus perhaps in the 
helium mixtures, due to the quantum sta- 
tistics. This phenomenon, which we 
called supermobility (28), is the forma- 
tion of bound pairs of fermions at a suffi- 
ciently low fermion concentration and 
temperature. This process is similar to 
the condensation of electrons into 
pairs-so-called Cooper pairs-in a su- 
perconductor. The fermion pairs would 
then move without friction through the 
mixture under the influence of a (fer- 
mion) concentration gradient, just as 
(Cooper) pairs of electrons move without 
resistance in a superconductor under the 
influence of an electric field. A phase 
transition from a thermodynamic state 
where the fermions in the mixture are 
not paired to a thermodynamic state 
where they are paired could, in principle, 
be observed by a little peak in the specif- 
ic heat or a singularity in the magnetic 
susceptibility. A much more realistic dis- 

I I 

-100% 35 He+-0% 4He 

7% 3He+93:/% 4He 

Fig. 6. Principle of the 3He-4He dilution refrig- 
erator. The 3He, pumped out of the lower 
mixture, is replenished from the upper mix- 
ture. By reintroducing the 3He again in the up- 
per mixture a continuously working machine 
is obtained. The dotted lines indicate the left 
out parts of the refrigerator. 

cussion of this phenomenon as well as of 
other aspects of the very low temper- 
ature part of the phase diagram (be- 
low 0.4?K) has been given by Bardeen 
et al. (36) on the basis of a semi- 
phenomenological model for the helium 
mixtures (37). 

Summary 

I have argued, following Einstein and 
London, that Bose-Einstein statistics is 
important for understanding the behav- 
ior of superfluid 4He, while Fermi-Dirac 
statistics is important for understanding 
that of 3He. In order to understand quali- 
tatively the general behavior of 3He-4He 
mixtures at constant pressure, the inter- 
action between the helium atoms cannot 
be neglected. A very simple model of 
3He-4He mixtures is then a binary mix- 
ture of two kinds of hard spheres that fol- 
low Bose-Einstein and Fermi-Dirac sta- 
tistics, respectively. This model cor- 
rectly predicts the most striking features 
of the phase diagrams of helium mixtures 
in the temperature-concentration plane. 
In particular, the Bose-Einstein statistics 
of 4He is responsible for the occurrence 
of a phase separation of the mixture at 
low temperatures that starts at an unusu- 
al type of critical point, while the Fermi- 
Dirac statistics of 3He leads to an in- 
complete phase separation near the ab- 
solute zero of temperature, which makes 
possible the successful operation of a 
powerful cooling device, the helium dilu- 
tion refrigerator. 
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