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Neurometrics 

Numerical taxonomy identifies different profiles of brain 
functions within groups of behaviorally similar people. 

E. Roy John, B. Z. Karmel, W. C. Corning, P. Easton, D. Brown, 

H. Ahn, M. John, T. Harmony, L. Prichep, A. Toro, I. Gerson, 

F. Bartlett, R. Thatcher, H. Kaye, P. Valdes, E. Schwartz 

Many data show that brain electrical 
activity reflects subtle aspects of brain 
functions including information process- 
ing and cognition. Many individuals suf- 
fer from disorders of these functions. An 
unknown but perhaps large percentage 
of them might benefit from intervention 
if precise diagnostic information were 
available. Although current psychologi- 
cal and neurological methods are not suf- 
ficiently sensitive for this purpose, elec- 
trophysiological measurements of brain 
functions related to information process- 
ing might be of substantial value. How- 
ever, the acquisition and analysis of elec- 
trophysiological data are so complex that 
evaluation of subtle brain functions by 
these methods has not become routine. 

We have developed a new methodolo- 
gy, called "neurometrics," to provide 
quantitative information about brain ac- 
tivity related to anatomical integrity, de- 
velopmental maturation, and mediation 
of sensory, perceptual, and cognitive 
processes. The goals of neurometrics are 
to gather accurate data sensitive to this 
variety of brain functions, to extract and 
quantify critical features of these data, 
and to classify the resulting profiles into 
clusters sharing common features of 
brain function by using statistical analy- 
sis and numerical taxonomy. 

Two related assumptions underlie our 
approach: first, the EEG (electroenceph- 
alogram) and sensory-evoked potentials 
contain diagnostically valuable informa- 
tion that can be made accessible by 
quantitative analysis; second, the cate- 
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mates of the prevalence of LD children 
range between 7.5 and 15 percent; be- 
tween 5 and 10 million children in the 
United States under the age of 15 have 
some form of brain dysfunction (4). 

Although psychological methods are 
better oriented toward the evaluation of 
cognitive functions than neurological 
methods, they reflect products rather 
than processes. Common behavioral 
manifestations can arise from disparate 
brain dysfunctions, but lead to similar 
treatments being used. Behaviorally de- 
rived diagnostic schemes are inadequate 
because of this "functional con- 
vergence." Further, some psychometric 
tests are culture-bound, making it diffi- 
cult to distinguish between unusual be- 
haviors reflecting different cultural 
standards. Current diagnostic processes 
and the subsequent pathological labels 
are under considerable attack (5). 

Mathematical techniques from the 
area known as "numerical taxonomy" 
permit quantitative neurometric data 
from many individuals to be used to con- 
struct objective, operational classifica- 
tion schemes. 

In this article we describe the neuro- 
metric procedures devised to achieve the 
goals listed above and present results ob- 
tained from patients with neurological 
diseases, elderly persons with cognitive 
impairment, and children with learning 
disabilities. 

Methods 

The goals of neurometrics required a 
new automated, computer-centered 
technology and a new strategy for diag- 
nosis and remediation of brain dysfunc- 
tions. It was necessary to develop: (i) a 
computer-controlled amplifier system 
that would reliably acquire data of good 
technical quality in an optimal format for 
quantitative analysis; (ii) a standardized 
set of test conditions (neurometric test 
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gories of brain dysfunction revealed by 
numerical taxonomy of these diagnostic 
features will represent clusters of indi- 
viduals with similar electrophysiological 
profiles of brain function. Each of these 
subgroups, dissected out of the hetero- 
geneous population who display the 
same behavioral symptomatology, may 
have different underlying causes for the 
similar symptoms and may respond to 
different treatments. 

Computer methods permit quan- 
tification of many diagnostically useful 
features of the EEG, as well as detailed 
examination of transient electrical oscil- 
lations or "evoked potentials" (EP's) 
elicited by sensory stimuli. Analyses of 
EP's not only provide information about 
the structural integrity of the brain, but 
yield insights into many aspects of brain 
functions concerned with the reception, 
encoding, processing, and evaluation of 
information (1, 2) that are not apparent 
from visual inspection of the EEG. New 
capabilities for the quantitative assess- 
ment of these more subtle aspects of 
brain function have important implica- 
tions for those concerned with cognitive 
processes, learning, and memory, espe- 
cially in learning disabled (LD) children 
and old people with cognitive deteriora- 
tion. 

Although learning disability may be 
the most common disorder seen by child 
psychiatrists (3), it is often unclear 
whether a child's learning disability re- 
flects brain dysfunction or is of emotion- 
al or environmental origin. Current esti- 



battery, or NB) constituting appropriate 
challenges of a wide range of brain func- 
tions with probable diagnostic utility that 
could be presented by a computer-con- 
trolled stimulator; (iii) analytic programs 
to extract quantitative features of the 
electrophysiological activity recorded 
under these test conditions; (iv) multi- 
variate statistical procedures to evaluate 
the probability of all derived measures 
relative to normative data bases to rede- 
fine concepts of "normal" or "abnor- 
mal"; (v) easily comprehensible display 
methods; and (vi) adequate techniques 
for numerical taxonomy which would 
utilize all observed features to classify 
individuals independently of a priori cat- 
egorization. 

A digital electrophysiological data 
acquisition and analysis system 
(DEDAAS) was constructed to meet this 
set of specifications. The DEDAAS uses 
up to 24 solid state EEG amplifiers (2) 
which have precise fixed gain, low noise, 
high common-mode rejection ratios, 
sharp 60-hertz filters to eliminate the 
need for a shielded room, high-input im- 
pedance to reduce the influence of varia- 
tion in electrode impedance, and free- 
dom from drift. 

The output of the amplifiers goes to a 
PDP 11 computer (11/45, 11/10, or 11/03 
microprocessor) that can calibrate the 
amplifiers or check the electrode imped- 
ances automatically. The 10/20 Inter- 
national Electrode System occupies 19 
channels, and channel 20 is used to 
monitor eye movements. Remaining 
channels permit accelerometer, electro- 
cardiogram, or other recordings. An ar- 
ray of light-emitting diodes, one corre- 
sponding to each electrode position in 
the 10/20 system, plus an oscilloscope, 
permits visual monitoring of local EEG 
events and pinpoints channels with unac- 
ceptable recording characteristics. 

Simultaneous monopolar recordings 
are obtained of the full 10/20 system ref- 
erenced to linked earlobes. These analog 
data are transformed by an analog-to- 
digital converter and stored on digital 
tape, disk, or cassette. Conventional 
bipolar montages or any desired com- 
pound electrode can be constructed sub- 
sequently by computer simulation. Rou- 
tinely, we compute 57 electrode com- 
binations or derivations (19 monopolar, 
19 coronal bipolar, and 19 sagittal bipolar 
pairs). Frequency and voltage limits 
specified for every channel are con- 
stantly monitored, permitting the com- 
puter automatically to reject data con- 
taminated by eye or body movement, or 
by high electrode impedance. One option 
accepts but marks all data considered 
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questionable; another option rejects 
such data. We routinely edit these data 
prior to quantitative analysis, examining 
conventional records reconstructed from 
the digital data to reassure ourselves of 
the adequacy of artifact rejection, which 
is fairly satisfactory. The DEDAAS rou- 
tinely yields usable data from newborn 
infants, hyperactive children, and rest- 
less geriatric patients who would normal- 
ly be extremely difficult or impossible to 
examine; DEDAAS simply waits until 
artifact-free segments of data occur, 
combining these into a sample suffi- 
ciently large for adequate analysis. 

Required stimulus sequences are pre- 
sented automatically with the use of the 
computer-controlled stimulator and the 
NB program. Complete stimulation 
protocols are incorporated into the digi- 
tal record to permit subsequent automat- 
ic data analysis without operator inter- 
vention. 

The initial version of the NB and the 
analysis procedures was constructed on 
the basis of our personal experience and 
judgment as to what test conditions 
would best reveal behaviorally signifi- 
cant dysfunctions and what features ex- 
tracted from such data would be of criti- 
cal diagnostic utility. We were especially 
influenced by certain previous findings 
which are summarized below. 

Analysis of the EEG in Neuropathology 

Normative baselines are available for 
the frequency composition of the EEG 
from birth to maturity (6), and for the 
symmetry of EEG waveshape and ampli- 
tude between bilaterally symmetrical, or 
homologous, derivations (7). These per- 
mit quantification of maturational lag 
from the spectral composition of the 
EEG. Not only many types of neuro- 
pathology but also learning and perform- 
ance difficulties are often correlated with 
excessive slow-wave activity and EEG 
asymmetries (8, 9). 

Quantitative frequency analysis re- 
veals various kinds of neuropathology 
(10). Matougek and Petersen (11) com- 
pared the ratio of power in the delta plus 
theta frequency bands (1.5 to 7.0 hertz) 
in the average normal adult to that of 
neurological patients, separately for 
each different head region. Values below 
0.8 were considered abnormal, in- 
dicative of excessive slow waves. This 
"age-dependent quotient" (so called be- 
cause age-specific normal values were 
used) was then plotted to show the distri- 
bution of excessive slow waves on the 
head. The region with the greatest ex- 

cess was considered the probable locus 
of the pathological process. The loca- 
tions of brain tumors were accurately de- 
termined by this method. 

A different strategy is based on the as- 
sumption that many kinds of neuro- 
pathology involve a unilateral disruption 
of brain function and might therefore de- 
crease electrical symmetry. Otero et al. 
(9) and Ricardo et al. (12) used a special- 
purpose symmetry analyzer to quantify 
the similarity of waveshape and ampli- 
tude of EEG signals from symmetrical 
pairs of electrodes in a large sample of 
neurological patients with confirmed le- 
sions. Discriminant analysis separated 
tumor (87 percent) and stroke (80 per- 
cent) patients from normals with an ac- 
curacy comparable to current results ob- 
tained with conventional EEG (13), but 
was of little use for the detection of epi- 
lepsy. These workers then used multiple 
discriminant analysis as a type of numer- 
ical taxonomy (14). Although tumor and 
stroke detection rates remained high and 
substantial differential diagnosis could 
be made, false positives increased to an 
undesirable level. 

Analysis of Average Evoked Response 

Symmetry in Neuropathology 

The evoked potential (EP), a transient 
electrical oscillation representing the re- 
sponse of a brain region to sensory stim- 
ulation, is frequently obscured by ongo- 
ing EEG activity. By computer averag- 
ing, the waveshape of an averaged 
evoked response (AER) can be extracted 
from EEG activity. This waveshape re- 
flects the spatial and temporal character- 
istics of the responding neural systems, 
and is a sensitive indicator of sensory, 
perceptual, and cognitive processes, or 
the presence of neuropathology. 

It is difficult to decide whether any in- 
dividual AER waveshape differs signifi- 
cantly from a "normal" contour. The 
problem of defining a "normal" wave- 
shape can be partially circumvented by 
evaluation of the asymmetry of AER's 
simultaneously computed from homolo- 
gous derivations, which also reduces 
concern about variations between indi- 
viduals. 

Normative data are available for aver- 
age correlation coefficients, peak ampli- 
tude discrepancies, peak latency dis- 
crepancies, and signal energy ratios be- 
tween AER's, from 16 derivations re- 
corded in each of 144 normal healthy 
young adults (15). These data reveal ex- 
tremely high AER waveshape sym- 
metry. 
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Although moderate amplitude asym- 
metry is correlated with normal later- 
alization of function (16), extreme ampli- 
tude asymmetry is a sign of pathology. 
Asymmetry of the AER is a sensitive in- 
dex of brain dysfunction, often appear- 
ing in patients without subjective com- 
plaints and with negative neurological 
and EEG findings in whom neuropathol- 
ogy is subsequently confirmed by other 
methods. Qualitative assessment of sym- 
metry was reported to give accurate (90 
percent) detection of tumors and cere- 
brovascular accidents (17). Otero et al. 
(14) obtained quantitative AER sym- 
metry measures on 177 patients with 
various neurological diseases. A dis- 
criminant function between these 
patients and a group of 144 normal sub- 
jects yielded detection accuracies of 82 
percent for tumors, 82 percent for 
strokes, 63 percent for epilepsy, and 74 
percent for miscellaneous neurological 
diseases. 

Harmony (18) compared the accuracy 
of discriminant functions based upon 
EEG or AER symmetry with conven- 
tional EEG evaluation, using 150 neuro- 
logical patients for which all three kinds 
of data were available (Table 1). Numeri- 
cal methods were superior to visual eval- 
uation of the EEG, except in the case of 
epilepsy. When computer assessment 
was combined with the conventional 
EEG, overall accuracy increased to over 
94 percent. These results suggest the 
practical clinical utility of these meth- 
ods, not only for rapid evaluation by 
paramedical personnel of patients at risk 
for brain disease, but as an adjunct to the 
conventional EEG. However, these 
methods are as yet of little utility for dif- 
ferential diagnosis between different 
neurological diseases. 

The Average Evoked Response Related to 

Sensation, Perception, and Cognition 

Sensory acuity. The AER can be used 
to estimate auditory thresholds and to 
assess the sharpness of retinal imaging 
(19). To obviate the limitations imposed 
by visual examination, we constructed a 
special-purpose computer to assess the 
significance of the difference between 
two AER's, utilizing the corresponding 
variances to compute the t-test at each 
point along the analysis epoch (20). This 
method permits comparison of the sym- 
metry of two AER's simultaneously 
computed from homologous regions or 
sequentially computed from the same re- 
gion to assess differences between re- 
sponses to different stimulus conditions. 
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Table 1. Relative overall accuracy of EEG symmetry, AER symmetry, and conventional EEG 
for each disease category (18). 

Positive cases found 
Disease 
category EEG symmetry AER symmetry EEG 

N Percent N Percent N Percent 

Tumors 26 84 22 71 22 71 
Strokes 46 87 42 79 32 60 
Epilepsy 29 73 23 58 33 83 
Miscellaneous 18 69 20 77 17 65 

Total 119 79 107 71 104 69 

If one condition is the absence and the 
other is the presence of stimuli of speci- 
fiable intensity, estimates of sensory 
thresholds can be obtained. 

This method was used to construct a 
screening test of visual acuity. When a 
fine spatial grid is replaced by a coarse 
grid so that contrast is perceived in a pre- 
viously homogeneous visual field, a 
marked change occurs in the AER at a 
latency of about 150 milliseconds (1, 21). 
Comparisons made with the t-test of 
AER's recorded under these two condi- 
tions show a significant difference at that 
latency if the subject can perceive the 
difference between the stimuli. Finer 
gradations of the spatial grid can permit 
more accurate acuity estimates. An anal- 
ogous procedure may be useful for 
evoked response audiometry (19). 

Perceptual capabilities. Aberrant 
AER features related to perceptual dys- 
function have been reported for persons 
with psychiatric disorders (22), and one 
explanation of schizophrenic symptom- 
atology points to perceptual dysfunction 
as a critical predisposing factor (23). The 
AER is sensitive to perceptual as well as 
sensory processes: for example, dif- 
ferent AER's are obtained with two dif- 
ferent colors except in the color-blind 
person (24) or with two different geomet- 
ric shapes equated for size (25, 26). 
Screening tests for perceptual dysfunc- 
tions have often been and certainly 
should be a standard part of clinical eval- 
uations. We have devised such tests us- 
ing a t-test strategy analogous to the one 
described above for sensory acuity (20). 

Cognitive processes. It is difficult to 
identify cognitive disorders, especially in 
children, when the tests used are verbal 
and culture-bound, measuring product 
without describing process. Electro- 
physiological techniques may circum- 
vent these limitations, yielding more di- 
rect insight into brain mechanisms medi- 
ating basic cognitive processes. 

1) Changes in the AER with age might 
serve as measures of maturation and of 
postconceptional age (27), and may be 
relevant for the assessment of cognitive 

function. The waveshapes obtained from 
mentally retarded children are smaller 
and less complex than in normal chil- 
dren. Asymmetry of evoked and spon- 
taneous activity in anterior temporal re- 
gions, involved in language function, ap- 
pears with maturation and may reflect 
lateralization of neural processes related 
to language acquisition (28). Other find- 
ings suggest hemispheric lateralization of 
responses to signals representing prima- 
rily verbal or spatial concepts (29). Final- 
ly, the waveshape elicited by a visual 
form of specified shape contains features 
independent of size (25). These invariant 
features may reflect a physiological con- 
comitant of abstraction; a square is a 
square regardless of its size. This per- 
ceptual constancy cannot be innate, but 
must be acquired by maturation and ex- 
perience, as an individual constructs 
generalizations from idiosyncratic expe- 
riences. 

2) The capacity to control afferent in- 
put is a universal adaptive property of 
brains. The AER method can be used to 
reveal: (i) "habituation," or the diminu- 
tion of responses to repetitious in- 
consequential events (30); and (ii) "se- 
lective attention," or the enhancing of 
salient features of the environment (fig- 
ure) with the suppression of in- 
consequential aspects (ground) when 
two differentially relevant events occur 
within the same (31) or different (32) mo- 
dalities. Children with learning disability 
or other brain dysfunctions are fre- 
quently incapable of structuring adaptive 
figure-ground relations (33). The inability 
to habituate the AER may be an early in- 
dicator of disorder (34). 

3) The extraction of invariant features 
from different stimuli with the same 
meaning can be assessed by the AER. 
Certain features of the AER remain con- 
stant when geometric forms of the same 
shape but different sizes (25), large and 
small versions of the same letter of the 
alphabet (35), or the same word printed 
in upper or lower case letters are pre- 
sented to the subject (36). 

4) Short-term memory and expec- 
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tancies based upon systematic relation- 
ships between environmental events are 
reflected by the AER. A late positive 
component (latency about 300 msec; 
P3-0) reflects the effect of a match or mis- 
match between predictions and actual 
events (37, 38). When the actual event 
can be predicted, P300 is suppressed or 
absent. The brain seems to use a repre- 
sentation of recent experience to gen- 
erate expectations about future events. 
Match-mismatch operations are involved 
in the response to novelty, focusing at- 
tention, habituation, and the organiza- 
tion of memory, as well as in cognitive 
processes involved in comparisons of 
word meaning. These processes are re- 
flected in late positive components of the 
AER (38). The AER also seems to reflect 
memory readout processes: "emitted" 
AER's appear in human subjects at the 
time of expected but absent events (39, 
40). 

5) In cats, AER waveshapes elicited 
by neutral stimuli in differential general- 

ization tests are not determined by the 
actual stimulus but correspond to the 
waveshape usually elicited by the appro- 
priate cue for the behavior subsequently 
performed (41, 42). Experiments with 
humans similarly demonstrate that the 
AER waveshape can be decisively influ- 
enced by the conceptual set of the sub- 
ject, or by the interpretation of an ambig- 
uous event. For example, AER's elicited 
in a task monitoring single or double 
clicks which might be loud or soft dis- 
played two components if the instructed 
set was for multiplicity, but only one 
component if the instructed set was for 
intensity (39). Different AER wave- 
shapes are elicited when the same spo- 
ken (43) or printed (36) word is embed- 
ded in syntactical context as a verb or a 
noun. We have found an anatomical dif- 
ferentiation between processes reflecting 
exogenous sensory input and endoge- 
nous memory readout (35). When the 
same visual stimulus was interpreted as a 
letter or as a number, AER's from parie- 

tal regions reflected these differences 
while AER's from occipital regions re- 
mained unchanged. Conversely, when 
two different visual stimuli with the same 
meaning were presented, occipital 
AER's reflected the physical differences 
while parietal AER's reflected their iden- 
tical meaning. Analogous results have 
been reported by others (44). 

6) The waveshape of the AER elicited 
by a novel stimulus changes as it be- 
comes established as a conditioned stim- 
ulus (41, 45). Since very young infants 
can be conditioned with corresponding 
AER changes (46), it is now possible to 
evaluate associative learning capacity 
within and between sensory modalities 
and different brain regions throughout 
the developmental span. 

7) Finally, AER measures have al- 
ready been demonstrated to correlate 
with various behavioral disorders (2). 
For example, differences in amplitudes 
of late components of the AER occur be- 
tween good and poor readers, and read- 

Table 2. Present content of the neurometric test battery with a brief indication of the intended purpose of each item. 

Neurometric test item 

EEG conditions and challenges 
1. Eyes open, spontaneous EEG 
2. Eyes closed, resting EEG 
3. Eyes open minus eyes closed 
4. Photic driving at 2.5, 5, 10, and 18 hertz 

AER conditions and challenges 
Sensory acuity 

5. 65 lines per inch, 50 percent trans- 
mission 

6. 27 lines per inch, 50 percent trans- 
mission 

7. 7 lines per inch, 50 percent trans- 
mission 

8. 45 db click 

Pattern perception 
9. Large square 

10. Small square 
11. Large diamond 
12. Small diamond 
13. "b" 
14. "d" 
15. "p" 
16. "q" 

Prediction of temporal order 
17. Random versus regular flash 
18. Random versus regular click 
19. Random versus regular tap 
20. Phasic habituation 

21. Dishabituation 

22. Rehabituation 

Sensory-sensory interactions 
23-25. Passive interactions between visual, 

auditory, and somatosensory systems 
26. Flash followed by click 250 msec 

later 
27. Click followed by flash 250 msec 

later 

Intended purpose 

Baseline measures 
Yields age-dependent quotient 
Effect of removal of visual input 
Yields reactivity in delta, theta, alpha, and beta ranges when compared with baseline 

measures 

Perceived as a blank flash 

Seen as checkerboard if visual acuity is approximately 20/20 

Seen as checkerboard unless visual acuity is worse than 20/200 

Elicits auditory AER unless hearing loss is sufficiently severe to interfere with lan- 
guage acquisition 

Each contributes to an estimate of perception of differences in geometric forms but 
preservation of shape invariance independent of size 

Each contributes to estimates of central discrimination between shapes of letters most 
commonly reversed 

Change in AER waveshape reflects diminished response to predictable stimuli, in- 
dicates recognition of repeated temporal sequence 

Reveals rate and amount of suppression of information input about a meaningless 
monotonous event, reflects attention and short-term memory 

Indicates whether suppressed input is nonetheless continuously monitored to permit 
detection of possible change 

By comparison with initial phasic habituation, reveals whether suppression of mean- 
ingless input is facilitated by memory of previous experience 

Reveals increase or decrease in response of brain as a result of simultaneous pre- 
sentation of simple stimuli in different sensory modalities 

Measure of recovery cycle after visual input 

Measure of recovery cycle after auditory input 
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ing disabled children have smaller com- 
ponent amplitudes at P00- (47), hyper- 
active children have small amplitude Pp'o 
and large amplitude N2-r components 
(48); various deviations from usual AER 
waveshapes have been found in children 
with learning disabilities (49); changes in 
AER features appear in severely re- 
tarded children (34, 50), and character- 
istics of the AER may predict the out- 
come of certain pharmacotherapeutic in- 
terventions (51). 

The Neurometric Test Battery and the 

Measure Set 

The neurometric test battery (NB), 
which is based upon the research find- 
ings reviewed above, does not require 
verbal interaction nor overt behavioral 
response, and thus substantially circum- 
vents the developmental, linguistic, and 
cultural limitations of psychometric 

tests. The NB yields EEG and EP data 
from a sequence of conditions and com- 
parisons between related conditions 
which are termed "challenges" and are 
comparable to test items (Table 2). A 
computer-controlled stimulator contains 
a photo-flash tube, a source of oscillating 
light, an automatic slide projector, click 
and pure tone (250, 500, 1000, and 3000 
hertz) sources of specified intensity, and 
a tactile stimulator. A video set and a 
cassette player provide other visual and 
auditory stimuli. 

From the data recorded for each elec- 
trode derivation under every NB condi- 
tion and challenge, a variety of numeri- 
cal features are extracted. 

EEG features. Under each EEG con- 
dition, 12 samples of "artifact-free" 
EEG's are recorded, each of 5 seconds. 
After being visually edited to further rule 
out artifacts, numerical features for each 
derivation are computed from each 
sample separately and mean values and 

standard deviations are calculated for 
the full set of samples. These indices, in 
hertz, are: (i) absolute power in low delta 
(0.5 to 1.5), high delta (1.5 to 3.5), alpha 
(7 to 13), low beta (13 to 19), high beta 
(19 to 25), gamma (25 to 40), and total 
(0.5 to 40) frequency bands; (ii) relative 
power (percentage) in each frequency 
band; (iii) ratio of delta plus theta to al- 
pha power; (iv) power symmetry within 
each frequency band between each pair 
of symmetrical (homologous) deriva- 
tions; and (v) waveshape symmetry as 
assessed by cross-correlation of the total 
signals and by coherence within each fre- 
quency band between each homologous 
pair. These computations yield quan- 
titative estimates of 1272 indices under 
every EEG condition and challenge. 

AER features. Under each AER con- 
dition, the AER of every derivation is 
computed from 64 evoked potentials 
yielding the digitized average signal volt- 
age and its variance at each of 100 time 

Table 2 (continued). 

Neurometric test item 

Figure-ground relations 
28-30. Interaction between meaningful 

visual input (figure, consisting of 
scenes on a video screen) and 
meaningless visual, auditory, or 
somatosensory input (ground) 

31-33. Interaction between meaningful 
auditory input (figure, consisting 
of a tape recording of a musical se- 
lection or story) and meaningless 
visual, auditory, or somatosensory 
input (ground) 

Conditioned response evaluation 
34. Visual stimulus, before conditioning 
35. Auditory stimulus, before condi- 

tioning 
36. Somatosensory stimulus, before 

conditioning 

After sensory-sensory condi- 
tioning with visual conditioned 
stimulus and auditory uncon- 
ditioned stimulus: 

37. Visual stimulus 

38. Auditory stimulus 

39. Somatosensory stimulus 
After sensory-sensory conditioning 
with auditory conditioned stimulus and 
visual unconditioned stimulus 

40. Visual stimulus 
41. Auditory stimulus 
42. Somatosensory stimulus 

EEG conditions and challenges 
43. Eyes open, spontaneous EEG 
44. Eyes closed, resting EEG 
45. Eyes open minus eyes closed 

46. Eyes open, beginning, minus eyes 
open, end 

47. Eyes closed, beginning, minus 
eyes closed, end 

Intended purpose 

Reflects dynamic structuring of figure-ground relationships which require discrimina- 
tion between relevant visual "signal" and irrelevant "noise," which may be either 
ipsimodal (video-visual) or cross-modal (video-auditory or video-somatosensory) 

Reflects dynamic structuring of figure-ground relationships requiring discrimination 
between relevant auditory "signal" and irrelevant "noise," which may be either 
ipsimodal (music-auditory) or cross-modal (music-visual or music-somatosensory) 

Baseline control measures 
Baseline control measures 

Baseline control measures 

Reflects effects of conditioning as specific changes in response to conditioned stimu- 
lus 

Control for "sensitization," revealed as generalized change to unconditioned as well 
as conditioned stimulus 

Control for "pseudoconditioning," revealed as generalized change to any stimulus 

Control for sensitization 
Estimate of specific conditioning effect 
Control for pseudoconditioning 

Replication of initial measures 

Estimate of effects due to state, such as anxiety about test or fatigue due to testing, 
versus characteristic individual features displayed across states 
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points, sampled at 10-msec intervals 
across a 1-second analysis epoch. A 
number of additional indices are extract- 
ed from these data which reflect critical 
features of the response. These derived 
features are computed for the whole 
analysis epoch and for each of four la- 
tency intervals corresponding to com- 
ponents or waveshape segments of spe- 

"noise"; (iii) signal-to-noise ratio; (iv) 
mean squared first difference, which is 
proportional to the product of the signal 
power and mean squared signal fre- 
quency; (v) difference in signal energy 
between homologous pairs; (vi) normal- 
ized difference in signal power between 
homologous pairs, broken down into one 
term representing power asymmetry and 

[for details, see (2)]. Programs are being 
tested which are intended to provide: 
(viii) peak amplitude for each of eight 
components; (ix) peak latency for the 
same components; (x) peak amplitude 
asymmetry, both absolute and relative, 
for each component; and (xi) latency lag, 
for each component. These computa- 
tions yield about 2000 derived indices, 

cial interest. The computed features are: one term representing waveshape asym- plus 5700 AER and variance values, for 
(i) signal power; (ii) variance, or metry; (vii) cross-correlation coefficient each AER condition and challenge. 
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t t system in a sample of 65 normal and 22 LD children. The overall 
Normal LD 

data data ----- LD^ group display represents the topography of the electrode array viewed from 
A if , *" LD group above, with the front of the head oriented toward the top of the dis- 

play. Each graph compares the cumulative histograms for two differ- 
01 02 - Normal ent groups of subjects, for selected NB parameters or a combina- 

Circled t values N 65 22 N 65 22 group tion of parameters recorded at the corresponding electrode position. are significant at .M 238 149 M 239 197 

P< .001 s 228 128 s 224 218 This example shows the distribution of the Z transform of the T 580 119 T 197 253 difference in the 200- to 500-msec latency domain (Pa0) in the power 
of AER's elicited by random and regular light flashes. At electrodes P3, P4, and T6, the LD group shows a significantly smaller AER differ- 
ence between these two stimulus conditions than the normal group (P < .001). This finding suggests that some LD children do not use 
orderly environmental relations to make predictions about future events in the same way as normal children, since the energy of P3i0 is known to 
reflect the amount of uncertainty about an event (37, 38). (B) Illustrative density coded Z-transformed displays of neurometric indices extracted 
from various EEG and AER conditions of the NB. Each column of displays represents data obtained from one subject, while each row re- 
presents one univariate or multivariate index. Each display represents an array of entries: each entry corresponds to the value of the index 
measured at that point on the subject's head, while the position of the entries in the array corresponds to the electrode locations of the 10/20 
system. For each index, the entry at any location has been density coded to reflect the Z transformation of the measure obtained from that 
subject referred to the mean of the whole population. If the Z-transformed value was such that the P level of obtaining that value by chance was 
not less than .1, two small spots (-.) were entered to convey that the measure was assessed and found within the normal range. If the value of 
Z was such that the P level was between .1 and .01, a small + was entered to show that the index was unusually large or a small - was entered 
if the index was unusually small; if the P level was between .01 and .001, a large + was entered if the value was abnormally high or a large - if it 
was abnormally low; if the P level was between .001 and .0001, a double + + or = was entered; between .0001 and .00001, a triple + + + or - 
was entered; P levels below .00001 were indicated by large solid shapes in the form of + or - signs. The data are for five normal and five LD 
children selected from a much larger sample and are to be considered as illustrative examples rather than as invariable findings. The displays in 
rows 1 to 4 show the distribution of relative power (code 139) in the spontaneous EEG, recorded from bipolar derivations (code 10) with eyes 
closed (code 2), respectively from top down in the delta, theta, alpha, and beta bands. Note the typical excess of slow delta activity predomin- 
antly in posterior head regions of the LD subjects, usually coupled with a deficiency of alpha and sometimes of beta activity. In row 5 the LD 
subjects show significantly less change in the signal energy (code 80) of the bipolar (code 10) AER in the latency region between 200 and 499 
msec when a flash is delivered randomly while the subject is watching a TV cartoon than when a flash is delivered randomly while the subject 
looks at the defocused TV screen (code 648). Row 6 shows that the LD subjects display significantly less change in the signal energy (code 80) 
of the monopolar (code 8) AER in the latency region between 200 and 500 msec when a random is compared with a regular flash (code 576). 
The particular head regions displaying this less-than-expected difference when the two conditions are compared vary from subject to subject. 
Such findings suggest, however, that LD children tend to display less suppression at P- to an irrelevant stimulus (ground) in the presence of 
meaningful environmental input (figure) and, analogously, display less of a tendency to distinguish between predictable and unpredictable events 
in the environment. This is reflected in the similarity of late positive components in AER's elicited by these two different kinds of events, and 
supports the observations in (A). 
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Evaluation and Display Techniques 

The digitized AER waveshape can be 
represented as a signal vector in a 100- 
dimensional time space, where each di- 
mension corresponds to the signal volt- 
age at a different latency point in the 
analysis epoch. Principal component 
analysis can identify the actual dimen- 
sionality of the "signal space" con- 
taining a set of such vectors representing 
AER's from many derivations in the 
same individual or from the same deriva- 
tions in many individuals (52). One can 
now construct a parsimonious descrip- 
tion of each AER as a linear combination 
of a set of terms. Each term defines the 
relative contribution ("weighting," 
whose square is proportional to the per- 
centage of signal power) of each basic di- 
mension (factor) to that AER. These lin- 
ear equations enable great data compres- 
sion, since any AER in that signal space 
can be described as some combination of 
the same basic factors. Thus, patterns of 
factor weightings can be used to con- 
struct clusters of AER's with distinctive 
morphology. 

Compression, evaluation, and display 
techniques were required to make the 
huge volume of available NB data com- 
prehensible. As the first step, baseline 
data were obtained for all or part of the 
NB from groups of healthy individuals in 
several age ranges of interest: newborn 
infants, elementary school children, and 
elderly adults. Group means and stand- 
ard deviations were computed for every 
quantitative index. This made it possible 
to use the t-test to compare subgroups on 
any condition or to compare conditions 
within any subgroup. Comprehension of 
differences between subgroups can be fa- 
cilitated by appropriate displays, such as 
POPHIS, shown in Fig. 1A. This display 
superimposes cumulative distributions 
of original or Z-transformed indices for 
two subgroups upon 19 graphs. Each 
graph represents a different electrode 
derivation and is located in the display 
relative to the position of that derivation 
on the head. These graphs can describe 
distributions of uni- or multivariate in- 
dices, differences between conditions 
which define challenges, or differences 
between bilaterally symmetrical loca- 
tions. Below each graph, data about 
sample size, mean values, standard devi- 
ations, and t- and Z-tests further document 
the observed differences. 

The Z Vector 

Evaluation of the data from any indi- 
vidual is based on a procedure that is the 
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most powerful strategy of neurometrics. 
Each NB index is subjected to Z trans- 
formation, such that the difference be- 
tween the individual index and the group 
mean value is divided by the standard 
deviation of the whole sample. This has 
four major consequences: (i) the individ- 
ual index is transformed from its original 
units to a metric reflecting the relative 
probability of that value within a healthy 
normal reference group. "Abnormality" 
is defined statistically as improbable val- 
ues exceeding those expected randomly, 
allowing for the large size of the measure 
set. It is especially useful to display the 
anatomical location of all improbable in- 
dices found within any individual. Exist- 
ing knowledge about the functional role 
of different cortical regions, together 
with the presumed processes probed by 
each NB item, provide the basis for ten- 
tative prediction of the possible behav- 
ioral implications of the individual pro- 
file of improbable values (53). In such 
displays (Fig. lB), a localized region on a 
head diagram represents the position of 
each derivation. The density of shading 
in each local domain is proportional to 
deviations from the normative reference 
in positive (+ entries) or negative (- en- 
tries) directions. This rapid overview of 
the findings in any individual provides a 
visual indication of the severity, type, 
and anatomical locus of abnormality, 
analogous to a "functional electro- 
physiological'brain scan"; (ii) indices de- 
scribing disparate dimensions, such as 
voltage, time, latency, coherence, and 
symmetry are transformed to the com- 
mon metric of probability. It therefore 
becomes possible to compare or com- 
bine measures that were initially not di- 
mensionally comparable; (iii) most im- 
portant, the abnormality profile of any 
individual can now be represented as a Z 
vector (or Z) in an NB-dimensional prob- 
ability space. The Z of the perfectly nor- 
mal individual only randomly leaves the 
normal domain defined by a hypercube 
with side = 2 Z = 2 x 1.96 (P < .05 on 
each dimension independently) centered 
at the origin of this space; and (iv) the 
distance matrix, Dij, can now be comput- 
ed between Z representing each individ- 
ual and Z of every other relevant individ- 
ual, yielding interindividual distances in 
probabilistic terms. 

The more unusual any NB index in an 
individual, the greater the component of 
Z in the corresponding dimension. Thus, 
the overall length of Z provides the 
quantitative and objective criterion for 
the severity of brain dysfunction in an in- 
dividual. From this viewpoint, the dis- 
tinction between "normality" and "ab- 
normality" depends upon the threshold 

value established in any particular set of 
dimensions. The multivariate nature of 
the dysfunction is defined by the orienta- 
tion of Z. Thus, Z provides the basis for 
an objective diagnostic classification 
scheme, as well as a way to compensate 
for the large number of false-positive 
findings to be expected by chance, given 
the large size of the set of NB indices. 

For all NB indices, the probabilities of 
a random positive finding are roughly 
equal. Given a population of normal 
healthy subjects, one would expect the Z 
vectors representing such random hits to 
be randomly distributed throughout the 
NB-dimensional probability space. Using 
the distance matrix computation, one can 
determine the actual density of Z points 
in any domain of this space and compare 
it to the density reasonably expected by 
chance. Regions of high density reflect 
the improbable similarity of profiles of 
improbable values shared by a group, or 
cluster, of individuals. Presumably, 
these individuals share a similar set of 
brain dysfunctions; they constitute a po- 
tential diagnostic category. Membership 
in a particular cluster thus suggests a 
common etiology for the observed pat- 
tern of dysfunction and potentially pro- 
vides a basis for the rational selection of 
differential treatment. 

Although Z is here discussed only in 
the context of brain dysfunction, this 
concept can be generalized to problems 
in other fields, and may provide the basis 
for a numerical taxonomic approach to 
other areas of medical diagnosis. 

Classification Strategies Based on 

Numerical Taxonomy 

Numerical taxonomy refers to tech- 
niques intended to identify groupings of 
data points in multidimensional spaces. 
If the measure set contains relevant vari- 
ables, objectively evaluated and span- 
ning a substantial dimensionality, mem- 
bers of clusters will share functional 
characteristics. Clusters will be more re- 
lated to natural structure within the pop- 
ulation than to any a priori bias. Numeri- 
cal taxonomic methods have been used 
in the classification of schizophrenics 
(54), so-called "MBD" (minimal brain 
dysfunction) children (55) and AER's 
(56). Some laboratories have used factor 
analysis to reduce the measure set and 
have then clustered subjects according 
to factor loadings (57). We have used 
factor analysis itself as a numerical tax- 
onomic method as well as other tech- 
niques. 

Factor analysis. Principal component 
analysis can describe a large set of AER 
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waveshapes precisely in terms of a small 
number of quantitative descriptors (52). 
These descriptors, or factors, can be 
conceptualized as basic waveforms pro- 

ions of duced by hypothetical signal generators 
ictor which, mixed in the correct proportions, 

would reproduce the various AER wave- 
shapes in the set. The first step is to de- 

iduals fine these factor waveforms as mathe- 
matical functions. The second step is to 

ions of determine the relative contribution, or 
factor weighting coefficient, of each factor to 

every AER waveshape, that is, that 
coefficient which achieves the best fit be- 

asiduals tween the waveform of that factor and 
the AER waveshape. Each AER wave- 

ions of shape in the set can be described as the 
)ctors linear sum of each factor multiplied by 

the weighting representing its relative 
contribution to that AER waveshape. 

siduals Precise comparisons between the indi- 
vere se- vidual members of a set of AER wave- 
e rather shapes can thus be reduced to com- 

These parison of the relative weights of corre- 
sponding factors, since the mathematical 
function describing any factor remains 
unchanged no matter how much it con- 
tributes to any AER. 

The set of all waveshapes that can be 
described by a given set of factors is the 
signal space defined by those factors. 
The dimensionality of the signal space is 

Normal the number of factors required to span 
factor the space to account for a predetermined 
space percentage of energy of the original set 

of signals. Principal component analysis 
se factor is a method of factor analysis that offers 
ribed in certain computational and other advan- 

tages (58). This method accounts for the 
variance in the signal space so as to max- 
imize the amount of variance derived 
from each successive factor. The solu- 
tions to principal component analysis are 
not unique, but arbitrary. Various rota- 
tions of this set of principal factors can 
be defined, just as the quadrants of the 
compass might be defined in various 
ways. We have found varimax rotation 
to yield factor orientations which corre- 
spond best to physiological processes 
(59). In order to compare AER's from 
different individuals under the same con- 
ditions or from the same individual under 
different conditions, procedures must be 
devised to ensure that the same factor 
waveforms are used to describe different 
bodies of data. 

Saline Figure 2 illustrates factor analysis of 
the six AER's in the top row. Three vari- 

that was max factor waveforms are in the left col- 

;e of the umn. The second row shows the contri- 
,fore the butions of the first factor to each of the 
Tlue. The original data waveshapes, obtained by 
hich can 

multiplying the factor waveshape by the 

to, pen- correlation coefficient between it and 
each data waveshape. The third row rep- 
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resents the first residuals obtained by 
subtracting the contribution of the first 
factor from each data waveshape. In 
subsequent rows this process is repeated 
for the second and third factors. The fi- 
nal residuals represent the energy in the 
original AER's unaccounted for by linear 
combination of the three factors. 

As the number of AER's from dif- 
ferent electrodes in cats increased, the 
number of factors necessary to span the 
signal space reached an asymptote (52). 
Similar data compression was achieved 
in analysis of AER's to flashes obtained 
from a monopolar occipital derivation in 
70 normal human subjects. By means of 
a clustering procedure (60), five clusters 
of AER's were obtained and submitted 
to principal component analysis (61). 
Only two factors accounted for better 
than 85 percent of the energy. We then 
carried out varimax rotations on AER's 
obtained from ten derivations in each of 
ten normal subjects. For each subject, as 
few as two and no more than three fac- 
tors were needed to account for an aver- 
age of 94 percent of the energy (62). 

Thus, under these conditions a limited 
variety of AER's exist in normal sub- 
jects. Interindividual variations, as well 
as intraindividual variations between 
various areas, could be described by a 
few factors. We realized that these inter- 
and intraindividual factors might be rec- 
onciled to describe AER's obtained from 
any derivation on any normal subject. 
When AER's from ten derivations on 
each of 48 normal subjects were factor 
analyzed, eight factors accounted for 98 
percent of the energy of the total of 480 
AER's (63). As a first approximation, 
this set of normal factors was capable of 
describing any AER to flash stimuli that 
was recorded from any derivation in any 
normal subject, and defined the signal 
space of normal subjects. 

Stepwise factor analysis. This is a 
method in which factors from one set of 
data are used to describe another set. 
The method reveals very clearly the ef- 
fects of dysfunction or treatment; for ex- 
ample, we have used this procedure to 
evaluate drug effects as follows: 

1) The AER's are obtained under 
standard conditions prior to drug admin- 
istration. The normal factors that ac- 
count for this normal signal space are 
identified. 

2) At a specified time after drug ad- 
ministration and under the same stand- 
ard conditions, AER's are again ob- 
tained. These new waveshapes are re- 
gressed on the normal factors and the 
percentage of energy in the responses af- 
ter drug administration that are within 
the normal signal space is computed. 
24 JUNE 1977 

This procedure ensures comparability of 
the factor structure used to analyze the 
different data sets. On occasion, a drug 
causes shifts within the normal space, re- 
vealed as changes in the weightings of 
particular factors in AER's from certain 
anatomical regions. In other cases, a 
drug causes fundamental changes in 
morphology so that AER's from some 
regions can no longer be adequately de- 
scribed by the normal factors. A new 
"drug space" now exists, representing 
brain states caused by the drug, defined 
by the residual waveshapes after the 
contributions of the normal factors have 
been subtracted from the AER's after 
drug administration (Fig. 3). 

Figure 4 illustrates the relative altera- 
tion in AER's from the visual cortex of a 
cat caused by different doses of several 
drugs, evaluated by stepwise factor anal- 
ysis (64). The same method might be 
used to quantify the effects of a particu- 
lar drug on different brain regions, or to 
provide a quantitative description of ab- 
normal subspaces. Normative data bases 
can be constructed at various stages of 
development. Groups of patients with 
different brain dysfunctions provide a 
sample of abnormal data. The dysfunc- 
tion space would be defined by the resid- 
uals outside the appropriate normal 
space. Numerical taxonomy of dysfunc- 
tions might be achieved by classifying 

Table 3. Flow chart for stepwise factor analysis. 
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Fig. 5. The procedure of stepwise factor analysis applied to patients with different types of 
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the patterns of weightings of the dys- 
function factors describing residuals 
from different dysfunctions. Such classi- 
fication might not only aid diagnosis but 
might prove useful in prognosis or treat- 
ment evaluation by comparison of suc- 
cessive measures, and need not be re- 
stricted to brain dysfunctions (see Table 
3 and Fig. 5). 

Cluster analysis. Z transforms trans- 
late weighting coefficients describing 
AER morphology or other indices of the 
NB measure set into the relative proba- 
bility of that index within the normal 
healthy population. A Z vector express- 
ing the results of many measures can be 
constructed for any subject. There are 
many techniques for identifying clusters 
of data vectors in measure spaces. 

We have used numerical taxonomic 
methods for the classification of single 
EP's and AER's from animals in behav- 
ioral situations, from neurological 
patients, normal and senile elderly 
patients, and normal and LD children. 
We were able to predict discriminative 

behavior in cats in a differential general- 
ization paradigm by using multi- 
dimensional scaling (65) to classify single 
EP's (56). Multidimensional scaling was 
slightly superior to factor analysis, re- 
vealing greater clarity of structure. In 
other studies (66) we obtained clear clus- 
ters separating normal subjects from 
patients with tumors. Related methods 
currently under evaluation are projection 
pursuit (67), minimum spanning tree 
(68), and path analysis (65), which seems 
potentially useful to track an individual 
through the trajectory of development or 
remediation of a dysfunction. 

Detection of Neurological Disease by 

Stepwise Factor Analysis 

We have applied stepwise factor anal- 
ysis to two groups of normal subjects 
and a variety of neurological patients 
(69), using a small subset of the NB, that 
is, routine EEG's and AER's to visual 
stimuli from bilateral central, occipital, 

temporal, centro-occipital, and occipito- 
temporal derivations (Table 4). We com- 
puted cross-correlation coefficient (r) be- 
tween AER's from homologous deriva- 
tions, the percentage of each AER (per- 
centage regression) lying within the 
normal space defined by varimax factor 
analysis of the first group of normal sub- 
jects, and the asymmetry of weightings 
(regression asymmetry) in the regression 
equations for homologous AER's. 

The results from the first normal group 
(N = 50) were used to define normal lim- 
its for each measure. By these criteria, 
one member of this normal group (2 per- 
cent) was erroneously categorized as 
"false positive." Next, the data from 
four test groups were analyzed: a new 
group of 25 normal subjects, 25 patients 
with confirmed brain tumors, 25 patients 
with cerebrovascular accidents (CVA), 
and 25 patients with epilepsy. The 75 
neurological patients came from a much 
larger population and were selected to 
present a particularly stringent chal- 
lenge; for example, ten tumor, ten CVA, 

Table 4. Results of stepwise factor analysis (percentage regression and regression asymmetry), symmetry analysis and conventional EEG evalua- 
tion of normal subjects and three types of neurological patients. Criteria for abnormality: (i) Percentage regression: C < 31, 0 < 41, T < 25, 
OT - 20, CO not used (where C, 0, T, OT, and CO are the central, occipital, temporal, occipito-temporal, and centro-occipital, respectively). (ii) 
Regression asymmetry (RA): total asymmetry of weightings for five homologous derivations > 310 percent. (iii) Symmetry analysis (r); rc < .59, 
rO < .52, rT- < .26, rco < .81, rOT < .16. Symbols: -, negative; ?, doubtful; +, positive finding; t, false positive; 1:, false negative. For a posi- 
tive diagnosis (ab), two different neurometric + values are required; if neurometric finding is only a single +, the conventional EEG must 
also be positive. 

Cases N detected 
Test by each 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 indexalone 

Normal controls 
% Regression - - + - - - - + - + + 4 
RA -__._ _._ _ _._ _ _ 0 
r . . . . . . . . + .-- _. . . . . . . . . . . . 1 
EEG ----------.--------- 0 

Diagnosis from - - - - ? ? ?+-- - - - - - ?- 0 + 
all measures 5 ? 

0 t 

Tumors 
% Regression - + + + - + - + - + - - + + + + - + + + - + + 16 
RA + + + + - + + - + + + + - + - + + + + + + + + + 21 
r + + + + - + + - - + + - + - - - + - + + + + - - + 15 
EEG - + - - + + + + + - - + - + + + - + - + - + + - 15 

Diagnosis from ab ab ab ab ? ab ab ab ? ab ab ab ab - ab ab ab ab ab ab ab ab ab ab ab 22 + 
all measures 2 ? 

1 t 
CVA 

% Regression + + + + - + - + + + - + + + - - - - + - 12 
RA + + + + + + + + + + + + - - - + + + + + + + 21 
r + + + - - - + - + -. + -+ -+ 7 
EEG - - + + + ++ + + - - - + + + + + + + 15 

Diagnosis from ab ab ab ab ab ab ab ababab ? ab - - - ab ab ab ab ab ab ab ? ab ab 20 + 
all measures 2 ? 

3 t 

Epilepsy 
%Regression + - + - - - + + - + - + + + - - 9 

RA - - + + - + - + - + + - + - + - + - - + + + + + - 14 
r - - + + - + - - - - - - - + - -- 4 
EEG - + + + - + + + + - + + + + + + + - - + + + + + + 20 

Diagnosis from ? ab ab ab - ab ab ab ? ? ab ab ab ab ab ab ab - - ab ab ab ab ab ? 18 + 
all measures 4 ? 

3 t 
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and five epileptic cases appeared normal 
by conventional EEG criteria, and all of 
the epileptic patients were receiving ef- 
fective anticonvulsant therapy. 

For these four test groups, the same 
measures were computed, except that 
the AER's were regressed onto the nor- 
mal factors according to the stepwise 
procedure. Each individual index was 
characterized as normal (-) or positive 
(+), according to the normal limits de- 
fined by the first normal group, as shown 
in the legend of Table 4. Any individual 
whose data included one positive finding 
was considered "at risk" or doubtful (?), 
while any two positive findings were suf- 
ficient for classification as abnormal (ab). 
Individuals with no positive findings 
were classified as normal (-). The classi- 
fication of patients considered doubtful 
on the basis of neurometric assessment 
alone was resolved by taking the EEG 
into consideration. If the EEG findings 
were also positive, the patient was 
classed as abnormal. 

A screening procedure. These results 
suggest that numerical taxonomy may al- 
ready be a practical first step in a two- 
stage screening process. Patients classed 
as abnormal on the basis of a 2+ neuro- 
metric evaluation would be referred di- 
rectly for neurological examination. 
Patients classified as doubtful would be 
referred for an EEG examination. Had 
this two-stage procedure been used in 
these 100 individuals, five healthy indi- 
viduals would have been subjected to an 
unnecessary EEG examination, but no 
false positives would have resulted from 
the procedure as a whole. (By conven- 
tional methods, abnormal EEG findings 
would be expected in about 10 percent of 
a normal population.) Only 50 of the 75 
neurological patients displayed abnor- 
malities by conventional EEG criteria. 
Forty-two patients, 15 with normal con- 
ventional EEG's, were classified as ab- 
normal on the basis of neurometric cri- 
teria alone; 21 more patients were classi- 
fied as doubtful, of whom 18 were then 
classified as abnormal on the basis of 
positive findings in the conventional 
EEG. Thus, the two-stage method yield- 
ed 80 percent detection of the neurologi- 
cal disease cases with 0 percent false 
positives, while the conventional EEG 
alone only yielded 67 percent accuracy 
in these cases. Only five of the 12 cases 
considered normal by neurometric cri- 
teria displayed abnormalities in the 
EEG. Even if patients neurometrically 
classified as normal were not further ex- 
amined, false negatives might be less 
than with exclusive reliance upon the 
conventional EEG. The two-stage meth- 
od might thus lessen the number of EEG 
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subjects from initial study; triangles show data from 20 senile subjects from second study. 

examinations required. These results 
might be substantially improved and ex- 
tended to other difficult diagnostic prob- 
lems by use of additional NB conditions 
and by AER techniques recently devised 
to detect specific brain diseases (70). 

Neurometric Identification and 

Classification of Senile Individuals 

We have used a modified subset of the 
NB to identify and classify 60 normal 
and 60 cognitively impaired patients (se- 
nile) over 60 years old (2, 71), using only 
subjects without overt neurological ab- 
normalities or abnormal findings in a rou- 
tine medical examination, including 
standard laboratory tests such as the 
SMA-12. All medication was suspended 
for at least 2 weeks before neurometric 
evaluation. Participants were considered 
"normal" if they had no history or cur- 
rent evidence of psychosis, long-term 
use of drugs acting on the brain, or pa- 
thology that might bias evaluations of 
brain function, and if they had a score of 
"not present" on seven scales of cogni- 
tive impairment in an "assessment of 
clinical status." These scales assessed 
confusion, mental alertness, recent 
memory, disorientation in time and 
place, mood depression, emotional labil- 
ity, and capacity for self-care, and were 
accompanied by a psychiatric evalua- 
tion. The normal group was matched by 
sex, age, level of education, and ethnic 
background to the cognitively impaired 
group, comprised of persons with at least 
mild to moderate impairment on two or 
more assessment scales and with a 
"global impairment score" which ex- 
ceeded a minimum value of 11. 

In a collaborating laboratory (72), data 
were recorded on F-M magnetic tape un- 
der ten sequential conditions: (i) 2 min- 
utes of spontaneous EEG; (ii) 5 minutes 
of click; (iii) 5 minutes of flash; (iv) 5 
minutes of flash paired with click; (v) 1 
minute of flash; (vi) 1 minute of click; 
(vii) 5 minutes of click while watching a 
silent color film; (viii) 2 minutes of click 
after the film; (ix) 5 minutes of flash 
while listening to a short story; and (x) 2 
minutes of flash after the story. Subse- 
quently, DEDAAS processed a playback 
of these data just like those from an on- 
line patient. 

The EEG sample was submitted to 
spectral analysis, and AER's were com- 
puted from conditions (ii) through (x). 
From these data, 3696 neurometric in- 
dices were extracted for each subject. 
All measures were subjected to the ap- 
propriate Z transformation. 

Separate discriminant functions were 
computed with the indices from each NB 
condition. Since so many measures were 
available, these discriminant functions 
predictably yielded highly accurate 
classifications whose concordance with 
clinical evaluations ranged from 64 to 86 
percent. A multiple discriminant func- 
tion, based on the two NB conditions 
which separately were most accurate, 
yielded an accuracy of 91 percent if sub- 
jects with ambiguous F ratios were ex- 
cluded, and 96 percent if subjects with 
inconsistent psychiatric profiles were ex- 
cluded. "Jackknife" replication of this 
function (73) yielded a replication accu- 
racy of 84 percent (P < .0001). 

Conventional EEG examination re- 
vealed abnormality in only 10 percent of 
the senile group, while discriminant 
function based only on neurometric EEG 
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indices showed 82 percent accuracy. AER condi 
Thus, neurometric methods seemed far of interhe 
more sensitive than the conventional covariance 
EEG in identifying elderly people with subject in 
cognitive impairments. was plottec 
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of 120 elderly patients. Each column of rec- group shov 
tangles shows the features displayed by mem- 
bers of the cluster indicated at the top of the 
column. Each row of rectangles indicates the 
values of a particular neurometric index ex- 
tracted from a specific NB test condition, in- 
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strength, monopolar AER, condition 7; B, sig- index 
nal-to-noise ratio, monopolar AER, condition 
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tion 9; D, signal-to-noise ratio, monopolar A 
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trodes from which the measure was derived. _ 
Indices of symmetry are presented along the _ 
midline at a point corresponding to the ante- p - 

rior-posterior position of the regions which _ 
were compared. Every entry represents the Q 
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mation of each individual value, relative to R - 
the grand mean and standard deviation of the _ 
total sample, and then averaging across all the S 
members of that cluster. The resulting aver- -- 
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bottom of figure) whose sign shows the direc- - 
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significance of the deviation. The distribution ? <.1 
of subjects by type within those different clus- + <.01 
ters is shown in Table 5. Nineteen subjects (13 - 
normal, five senile, and one "unclassified") +? <.001 
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in the delta band. Therefore, for a ran- 
domly selected subgroup of normal 
(N = 27) and senile (N = 18) individ- 
uals, the Z transforms of the inter- 
hemispheric covariance of late com- 
ponents of the AER elicited by back- 
ground flicker and click (one per second) 
were combined with Z transforms of the 
log normal (In) percentage of power in 
the delta band of the resting EEG from 
two derivations (temporal and central- 
temporal). The cumulative distributions 
of the two subgroups for this composite 
Z score were widely separated. A sample 
of moderately impaired elderly people 
(N - 20) was then recruited locally (74), 
neurometric data were gathered directly 
by DEDAAS, and the same composite 
measure was constructed. The results 
from the first study and this independent 
replication are shown in Fig. 6. Thus, 
normal and cognitively impaired elderly 
groups revealed marked neurometric dif- 
ferences not apparent in the convention- 
al EEG, and showed a graded relation 
between abnormal neurometric indices 
and abnormal behavior, and these find- 
ings were replicated well in an indepen- 
dent sample as well as by the jackknife 
method. 

Although these two groups as a whole 
were significantly different on most 
neurometric indices, different senile indi- 
viduals were significantly abnormal on 
different indices. If distinctive profiles of 
abnormal neurometric indices were 
shared by subgroups of senile patients, 
these profiles might represent different 
organic causes of the same behavioral 
syndrome. Cognitive deficits due to 
these different causes might respond dif- 
ferentially to individualized types of 
treatment which might eventually be 
found. Accordingly, cluster analysis was 
used to fractionate the initial sample of 
120 elderly people into different sub- 
groups. Only NB data from conditions 1, 
7, and 9 were used, as in the analysis de- 
scribed in Fig. 6. The innovative clus- 
ter analysis procedure is described else- 
where (2). The results are shown in Fig. 
7. Seven clusters contained 101 people, 
while 19 remained unclassified. The first 
three clusters contained 45 normal and 
only two senile people, while the last 
four clusters contained 45 senile 
patients, seven patients who were prob- 
ably senile but for whom full clinical as- 
sessment could not be obtained, and on- 
ly two normals. The distribution within 
each cluster is shown in Table 5. 

No significant differences were found 
between the four senile clusters with re- 
spect to severity of cognitive impair- 
ment. One of the normal groups displays 
an excess of slow waves in the EEG, 
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usually considered characteristic of cere- 
bral arteriosclerosis or diffuse cell loss, 
while at least one senile group fails to 
display these features. Thus, slow waves 
in the elderly may not reflect diminution 
of cerebral blood flow or diffuse loss 
of brain cells or, alternatively, such 
changes may be neither necessary nor 
sufficient for cognitive impairment. 
Three of the senile groups were notewor- 
thy for interhemispheric AER asymme- 
try in long-latency components. Mem- 
bers of these clusters may suffer from 
impaired interhemispheric synchro- 
nization related to processing of informa- 
tion in the 200- to 500-msec latency do- 
main. Individualized therapies may 
eventually be found for members of 
these groups. 

Neurometric Identification and 

Classification of LD Children 

The full NB described in Table 2 was 
initially administered to 118 children ten- 
tatively preclassified as "normal" and 57 
preclassified as "learning disabled" 
based on school performance and opin- 
ions of the referral sources. The age of 
these male children ranged from 7.8 to 
10.4 years. Testing was divided into sev- 
eral segments, interrupted at will for rest 
periods or meals. A total of 1 to 2 hours 
was required, depending on the restless- 
ness of the child. An extensive psycho- 
metric battery was also administered 
(75), which usually occupied a full day. 
Test segments were intermingled with 
rest periods or lunch, or both. We will 
describe briefly here how these volumi- 
nous data were reduced and made com- 
prehensible [details are provided else- 
where (2, 53, 76, 77)]. 

Data reduction. Means, standard de- 
viations, and distributions were calcu- 
lated for each measure for the whole 
sample. Variables displaying non-Gaus- 
sian distributions were submitted to a 
logarithmic transform. Every index ex- 
tracted from each individual was then Z 
transformed relative to the sample 
means, to estimate its relative probabili- 
ty. Displays such as that in Fig. IA en- 
abled the distribution of values for any 
index at each electrode location to be 
compared for the normal and LD groups. 
Numerous significant univariate dif- 
ferences were thus found between the 
normal and LD groups. Displays such as 
that in Fig. lB revealed the anatomical 
distribution of unusual indices in each 
child. 

Comparison of neurometric and psy- 
chometric tests. Only the first two condi- 
tions of the NB (1 minute each of eyes 
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Table 5. Members of normal (1 to 3) and senile (4 to 7) clusters found by cluster analysis [from 
(2)] 

Cluster Subjects that 
Category did not 

1 2 3 4 5 6 7 cluster 

Normal 30 9 6 2 0 0 0 13 
Senile 1 1 0 15 13 10 7 5 
No full clinical 0 0 0 3 2 1 1 1 

assessment 
Total 31 10 6 20 15 11 8 19 

open and of eyes closed EEG) were se- 
lected for this comparison because these 
measures can be obtained from almost 
every subject. We have obtained these 
measures successfully from over 1000 
children from infancy to adolescence, 
with failure in less than ten cases. If ef- 
fective discrimination between normal 
and LD groups could be accomplished 
with only these measures, this might be 
the basis for rapid and economical mass 
screening, applicable even to the ex- 
tremely young or extremely impaired 
child. 

Neurometric indices were extracted 
separately for the eyes open and eyes 
closed conditions and for the differences 
between the two conditions. Factor anal- 
ysis was carried out on the full set of in- 
dices. Factor scores were computed for 
every factor for each individual and add- 
ed to the measure set. Two discriminant 
functions were then computed with the 
use of this expanded set of neurometric 
EEG indices and with those psycho- 
metric measures which by univariate 
analysis of variance and stepwise dis- 
criminant methods discriminated best 
between the normal and LD groups (53). 

The initial discriminant accuracy was 
93 percent for the neurometric and 76 
percent for the psychometric indices. 
The Jacknife replication accuracy was, 
respectively, 77 percent and 71 percent. 
When corrected for correlation with so- 
cioeconomic status (SES), culture, age, 
and WISC full-scale IQ, the neurometric 
discriminant score accounted for 4.6 
times more independent variance than 
the psychometric score (23 versus 5 per- 
cent). Regression analysis of covariance 
revealed no significant covariance be- 
tween the two kinds of discriminant 
scores, confirmed by absence of signifi- 
cant canonical correlations between the 
two measure sets. 

Neurometric EEG measures not only 
discriminated between normal and LD 
children better and were more con- 
cordant with preclassification than the 
psychometric measures, but reflected 
processes more intimately related to 
brain function. Not only do psycho- 
metric measures in this study account for 

little of the independent variance related 
to the distinction between normal and 
LD children, but their relation to brain 
function is far more inferential. These 
findings cast doubts on whether these 
psychometric measures, which included 
many tests commonly used to assess for 
organicity in learning disability, possess 
any significant specific sensitivity to 
brain dysfunction. Aside from their bias 
with respect to age, IQ, culture, and 
SES, demonstrated above, the supposed 
relation between these psychometric 
measures and brain dysfunction may 
merely reflect the fact that performance 
on these tasks is heavily dependent upon 
skills which are difficult for the LD child 
to acquire. 

The distribution of scores on the 
neurometric and psychometric discrimi- 
nant functions was examined by plotting 
the value of one score versus the other 
for each child. The density of subjects 
at each point in this dual-discriminant 
space was represented as height on a 
probability surface. Computer-con- 
structed views of this surface from eight 
different vantage points are presented in 
Fig. 8. 

Multivariate procedures. We used fac- 
tor analysis to reduce the highly redun- 
dant measure set described above to 
more manageable size, and stepwise dis- 
criminant analyses to identify the mea- 
sures most sensitive to differences re- 
lated to learning disabilities. For each 
NB item, least squares analysis of vari- 
ance (ANOVA) across all derivations 
was used to identify independent latency 
bands along the analysis epoch in which 
AER's for the normal and LD subgroups 
were maximally different. More precise 
clustering could be achieved by restrict- 
ing analyses to these sensitive latency 
bands, since less informative data were 
thus excluded. Independent corrobora- 
tions of the ANOVA results were ob- 
tained as follows: The factor structure of 
the AER set for each condition was de- 
termined. Factor scores for every factor 
were computed for every derivation. 
Discriminant functions were then con- 
structed with the use of weighted factor 
loadings at each latency point along the 
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Fig. 8. Density distribution of psychometric versus neurometric discriminant scores. The two 
scores for each subject have been plotted with respect to a psychometric and neurometric axis. 
The surfaces illustrated represent the number or density of subjects whose scores fell at the 
corresponding points. These surfaces are presented as if viewed from different vantage points, 
to permit visualization of the distribution. 
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analysis epoch, describing the time 
course of differences between the normal 
and LD groups at every electrode place- 
ment for each NB item (78). These dis- 
criminant functions were compared with 
the F ratios obtained at each latency 
from the ANOVA, to confirm the latency 
bands in which the normal and LD 
groups could best be distinguished. 

Differences between normal and LD 
children. In short, all of these multi- 
variate analyses revealed highly signifi- 
cant differences between the normal and 
LD groups as a whole. Each graph in 
Fig. 9 shows the F ratio yielded by 
ANOVA for a different AER condition 
of the NB; all peaks are highly signifi- 
cant. The effects of early differences 
were partialled out of later values, so 
that all successive peaks were indepen- 
dent of prior peaks, at least at P - .01. 
Note that NB conditions in the same set 
gave peaks at similar latencies. Since en- 
tirely different data were used for each 
graph, these results constitute indepen- 
dent replications within each set. How- 
ever, different sets of conditions gave 
peaks at different latencies, which may 
reflect the time at which critical steps in 
information processing take place in 
these different conditions. 

Homogenous subgroups within the 
heterogeneous LD population. Figure 8 
suggests that the population is more het- 
erogeneous with respect to neurometric 
than psychometric measures. Projection 
of the surface onto the neurometric axis 
reveals clear multiple peaks. The hetero- 
geneity of the LD group, suggested by 
this display, is borne out by cluster anal- 
ysis. Data obtained from 50 LD children 
in three different EP conditions were 
subjected to cluster analysis by the same 
method used for our senile data, the en- 
tire AER waveshape being used as well 
as segments restricted to the latency 
bands found to be most discriminating by 
the ANOVA and discriminant technique 
above. Cluster analysis revealed five dis- 
tinct subgroups within the group of LD 
children previously considered homoge- 
neous. The AER's in the three different 
EP conditions displayed distinctive fea- 
tures for each subgroup. 

The sample of LD children in this 
study was far too small and the age range 
too restricted for accurate estimation of 
the actual number of subgroups within 
the LD population. Further, much more 
extensive behavioral and neuropsy- 
chological assessment was desirable to 
identify the functional significance of 
membership in any cluster. Accordingly, 
a study was initiated in a school for edu- 
cationally handicapped children (79). 
The full NB has already been adminis- 
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tered to over 750 children, and more ex- 
tensive behavioral evaluations are in 
progress. 

In view of the discriminating power of 
the neurometric EEG indices revealed in 
our initial study of LD children, and in 
view of the sensitivity of measures of 
hemispheric asymmetry revealed in our 
studies of cognitive impairment in the 
elderly, we carried out a preliminary 
analysis of comparable NB data from the 
first 533 of these children. For this analy- 
sis, we used the EEG frequency and sym- 
metry measures and EP symmetry mea- 
sures which contributed most to the pre- 
vious discriminant functions in an 
attempt to replicate our earlier findings. 

Briefly, a polynomial regression was 
computed to fit the set of values for pow- 
er in the various EEG bands as a func- 
tion of age and electrode derivation pub- 
lished by Matougek and Petersdn (6). 
For each frequency band and electrode 
derivation, this procedure yielded a 
smoothed regression function based on 
561 subjects. We think these smoothed 
spectral estimates are more reliable than 
the original data from which they are de- 
rived. The original data were based on 
sample sizes ranging from 18 to 41 sub- 
jects at each age. The regression function 
offers the further advantage of allowing 
interpolation of values corresponding to 
the actual age of any child, while the 
original data were quantized into yearly 
increments. These polynomial functions 
agreed well with comparable data ob- 
tained from 85 children considered as un- 
equivocally normal in our initial study. 
Minor adjustments were made to com- 

pensate for possible differences in our 
equipment, measurement procedures, 
and for the greater ethnic heterogeneity 
of our sample population. Means and 
standard deviations for EEG and AER 
symmetry were taken from our previous 
study, which agreed well with other find- 
ings (7, 15). 

Using these normative data, we sub- 
jected to Z transformations the EEG in- 
dices and AER indices (obtained in re- 
sponse to blank flashes and spatial grids 
with 27 and 7 lines per inch) from 533 LD 
and 50 normal children randomly se- 
lected from our initial normal sample. In- 
dices with Z-transform values -1.96 
(P - .05) were defined as "dysfunction- 
al" and tallied separately for bilateral pa- 
rieto-occipital (PO), central (C), and 
temporal (T) derivations. The AER in- 
dices were only considered dysfunction- 
al if the same index was deviant in the 
same latency domain in the same region 
for at least two out of three of the AER 
conditions. 

The 533 LD children were randomly 
divided into two groups, LD, (265 cases) 
and LD2 (268 cases). The members of 
each group were then classified separate- 
ly according to the seven regional cate- 
gories (columns) and seven dysfunction 
categories (rows) shown in Table 6. A 
coefficient of concordance was comput- 
ed between these two independent distri- 
butions and was found to be 0.991 
(P < 10-6). The data from LD1 and LD2 
were then combined, and converted to 
percentages. Table 6 reveals marked dif- 
ferences between the normal LD sub- 
groups: 92.6 percent of the LD group but 

only 20 percent of the normal group 
showed unusual indices significant at the 
P < .05 level. Unusual values in the nor- 
mal group were always restricted to only 
one anatomical region (PO or T) and con- 
sisted of dysfunction in a single index. 
Only 5.5 percent of the LD group 
showed this pattern of dysfunction; 77.3 
percent of the LD group but 0 percent of 
the normal group showed dysfunctions 
in more than one anatomical derivation, 
with 50.8 percent of the LD children dis- 
playing dysfunctions in every anatomical 
region. 

Nine major clusters contained over 
64.3 percent of the LD children but 0 
percent of normal children. Five patterns 
of dysfunction (rows) accounted for 82 
percent of the LD children but 0 percent 
of normals, while 81.1 percent of the 
LD's and 0 percent of the normal chil- 
dren displayed dysfunction in five ana- 
tomical patterns (columns). Unusual 
EEG features were shown by 78.3 per- 
cent of the LD children but only 20 per- 
cent of the normal children, thus repli- 
cating our original finding that normal 
and LD children differ markedly with re- 
spect to certain neurometric EEG in- 
dices. Note that 87.5 percent of the LD 
children but only 8 percent of the normal 
children displayed abnormal EEG or 
AER asymmetry, or both, with 71 per- 
cent of LD's but 0 percent of normals 
showing AER asymmetry, consistent 
with our finding of marked AER asym- 
metry in many cognitively impaired el- 
derly persons. A much larger sample of 
normal children must now be studied to 
obtain normative data over a wider age 

Table 6. Frequency distribution of 533 LD and 50 normal (N) children according to anatomical location (columns) and 
dysfunction (rows) significant at the P < .05 level (PO, parieto-occipital; C, central; and T, temporal derivations). 

types of neurometric 

Anatomical location of dysfunction 

PO C T PO + C 

N LD N LD N LD N LD 

PO +T C +T PO + C +T 

N LD N LD N LD 

EEG frequency 
.060 .004 .000 .011 .060 .006 .000 .004 .000 .002 .000 

EEG asymmetry 
.040 .006 .000 .000 .040 .039 .000 .000 .000 .004 .000 

EEG frequency and EEG asymmetry 
.000 .000 .000 .004 .000 .006 .000 .000 .000 .045* .000 

Total 

N LD 

.009 .000 .015 .120 .051 

.000 .000 .004 

.009 .000 .047* 

.080 .053 

.000 111* 

EP asymmetry 
.000 .030* .000 .017 .000 .015 .000 .034* .000 .008 .000 .009 

EEG frequency and EP asymmetry 
.000 .000 .000 .004 .000 .000 .000 .009 .000 .008 .000 .006 

EEG asymmetry and EP asymmetry 
.000 .000 .000 .002 .000 .004 .000 .011 .000 .017 .000 .017 

EEG frequency and EEG asymmetry and EP asymmetry 
.000 .000 .000 .000 .000 .006 .000 .009 .000 .045* .000 .019 

.000 .030* .000 .143* 

.000 .073* .000 .099* 

.000 .071* .000 .122* 

.000 .268* .000 347* 

.100 .039 
No dysfunction 

Total 
.000 .038* .100 .075 .000 .068* .000 .128* .000 .069* .000 .508* 0.200 0.926 

0.800 0.058 
* Significantly more LD than normal. 
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tNine LD cases had inadequate data (.016). 

1407 



range, since most of our normals were 9 
years old, and to confirm the low in- 
cidence of false positives with the cri- 
teria used in this study (80). 

The most striking feature of these re- 
sults is the high percentage of LD chil- 
dren who displayed multiple types of 
dysfunction in multiple regions. The high 
incidence of pervasive dysfunction sug- 
gests widespread occurrence of some 
source of severe, generalized insult, 
such as pre- or perinatal trauma, malnu- 
trition, or stimulus deprivation. Careful 
retrospective and longitudinal studies 
might give some insight into the cause of 
such dysfunction, and preventive mea- 
sures might then be devised. Certain ab- 
normal patterns were found pre- 
dominantly in children less than 12 years 
old, while others were found mostly in 
teen-agers. These patterns may merely 
be a sampling error, reflecting changing 
criteria in school evaluation policies, or 
may be related to the concept of devel- 
opmental lag (which may explain why 
the common prediction of the pediatri- 
cian, "this child will grow out of it," is 
so often correct) or to obscure endocrine 
influences at the onset of puberty. 
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Differential neurometric profiles of ANOVA comparisons between normal 
)ecific learning disabilities. Using the children and children with different types 
)ncept of the "learning quotient" first of learning disabilities. Although F ratio 
it forward by Myklebust (81), which differences significant at the P ? .01 lev- 
/aluates the academic achievement of a el are evident when the combined LD 
iild relative to his mental age, chrono- group is compared to the normals, no 
gical age, and grade level separately clear hemispheric pattern emerges. This 
r different skills, Ahn (82) conducted provides an example of how treatment of 
i analysis of 20 normal children, ten a heterogeneous population as homoge- 
lildren with defective language but nor- neous can obscure rather than clarify 
al arithmetic skills (verbal under- diagnostic features. The data for normal 
:hievers, or VUA), ten children with versus VUA show that differences be- 
;fective arithmetic but normal language tween these two groups are primarily 
ills (arithmetic underachievers, or found on the left hemisphere, mostly be- 
UA), and ten children with both defec- tween 300 and 450 msec. The data for 
ve language and arithmetic skills normal versus AUA show a pattern 
lixed underachievers, or MUA), se- which is very different and remarkably 
cted from the subgroup of children 9 consistent, with significant F ratios in the 
ars old in our initial study. By means 300- to 350-msec latency domain on the 
ANOVA, the AER's of the normal right hemisphere for all 11 conditions. 

lildren were compared to those from The data for normal versus MUA show 
e combined group of underachievers significant F ratios almost exclusively re- 
.D), the VUA, AUA, and MUA stricted to the 225- to 250-msec domain 
oups, separately for all left-hemisphere on the left hemisphere for all 11 condi- 
id right-hemisphere placements for tions. 
ich of the 11 NB conditions for which Thus, the three different types of un- 
e overall normal versus LD differences derachievers display three radically and 
ere illustrated in Fig. 9. replicably different patterns of deviation 
Figure 10 shows the results of these from the AER morphology observed in 

children with normal learning quotients. 
The neurometric features of two of the 

lus Right hemisphere five subgroups classified by the cluster 
Jon 

analysis of the LD sample described ear- 
= - ~~_A lier were closely similar to the features of 

the AUA and MUA subgroups just dis- 
_ _ cussed. A remarkable feature of these 

- findings is that information processing in 
children with a particular type of learn- 
ing disability seems to reflect a general 

- B operational defect, independent of the 
specific information content of the input, 

__- revealed as a distinctive spatiotemporal 
_ _- -pattern. 

1 2 3 

1 2 3 

2 3 1 

100) 

Fig. 10. Results of ANOVA comparisons, as shown in Fig. 9, between (A) 
and a group of LD children containing ten verbal underachievers (VUA), te 
achievers (AUA), and ten underachievers in both verbal and arithmetic skill 
normal and ten VUA children; (C) the 20 normal and ten AUA; and (D) th 
MUA. The graphs on the left side show differences for all combined left-he 
placements, while those on the right show right-hemisphere differences. 
horizontal bars indicate the latency regions in which the F ratios between th( 
were significant at P < .01. Each graph presents the results of separate A 
for 11 different NB conditions, identified by vertical sequence down the c 
Clear spatiotemporal differences in AER's exist between the normals and e 
differently disabled children, and each specific type of disability is character 
spatiotemporal pattern (82). 
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__ 
Conclusions 

-- Neurometric methods may serve to 
. . . . . provide criteria for the efficacy of inter- 
4 5 6 7 ventions, whether pharmacological or 

- - D behavioral, in a wide variety of diseases 
and dysfunctions, including neurological 
disease, senile deterioration, learning 
disability, psychosis, mental retardation, 

; s- *- *-:=; drug addiction, and malnutrition. The 
amount of damage and rate of recovery 
from perinatal trauma, head injury, and 

20 normal children stroke may be quantitatively evaluated 
en arithmetic under- and followed by neurometrics. These 
s (MUA); (B) the 20 techniques may also be used to assess 
e 20 normal and ten 
emisphere electrode the consequences of organic diseases not 
In each graph, the directly but potentially relevant to brain 
e compared samples function, such as cardiovascular disease, 
iNOVA evaluations kidney disease, and various metabolic 
oenter of the figure. diseases and to determine the effects on 
ach of the groups ofp . l n.. ized byadistinctive human beings of drugs, food addltlves, 

toxins, and environmental pollution. 
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Once banks of data are constructed 
from different types of normal and ab- 
normal individuals, and effective mass 
screening programs are inaugurated, 
neurometrics may prove useful for many 
of these purposes. The early detection 
and remediation of brain disease and 
cognitive disorders would reduce some 
of the human social and economic costs 
of failure to recognize these problems. A 
real peril exists, however, in that the fate 
of young as well as old persons might be 
as decisively influenced by neurometric 
measures as has been the case with psy- 
chometric measures. While it may even- 
tually be possible to achieve early identi- 
fication of children at risk for specific 
learning disabilities before behavioral 
difficulties have emerged, the attendant 
dangers of premature or mistaken diag- 
nosis and the adverse effects of labeling a 
child as dysfunctional must be clearly 
recognized. Procedures must be devised 
to ensure that neurometric evaluations 
are used to optimize the development of 
individuals, rather than to restrict their 
opportunities as has too often been the 
case with psychometric assessment. 
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Through the combined efforts of two 
groups, a 12-year period of research in 
organic natural product synthesis came to 
an end in 1972 with the completion of two 
total syntheses of cobyric acid and, hence, 
of vitamin B12. The work was accom- 
plished through the close collaboration of 
R. B.. Woodward's group at Harvard and 
the group at the Eidgen6ssische Tech- 
nische Hochschule (ETH). In addition to 
a series of published lectures (1-3) de- 
scribing the syntheses, a lecture dealing 
with trends and objectives in natural 
products chemistry as seen from the van- 
tage point of B12 synthesis has appeared 
in German (4). This article is a translated 
and modified version of that lecture and, 
in addition, includes the full scheme of 
the photochemical variant of the cobyric 
acid synthesis. 
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On the Role of Natural Product Synthesis 

Research on the synthesis of natural 

products is part of the foundation of our 

knowledge about structure and reactivity 
in organic chemistry. To a large degree, 
our ability to prepare organic com- 

pounds, whether naturally occurring or 

not, has grown out of such research. The 

importance placed on the technological 
aspect of natural product synthesis has 
not changed substantially since the era of 
Adolf von Baeyer. On the other hand, its 
scientific function within organic and bio- 

logical chemistry has altered consid- 

erably with the passage of time. 

During the classical period of natural 

products chemistry, synthesis was an es- 
sential part of the process of structure de- 
termination. Von Baeyer's labors on in- 
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digo and Hans Fischer's on the porphy- 
rins may stand as consummate examples. 
The potential ambiguity of degradative 
evidence made the complementary infor- 
mation of synthesis imperative. This clas- 
sical summons of synthesis to the deter- 
mination of constitution did come about, 
however, not because at that time there 
existed any greater certainty about the 
structural course of synthetic reactions 
than of degradative ones. Rather, it was 
the extremely high improbability that re- 
ciprocally compensating errors of inter- 
pretation would occur, which conferred 
the weight of proof of constitution on an 
identity of constitutional hypotheses 
derived from both degradation and syn- 
thesis. However, the development of or- 
ganic natural products chemistry is char- 
acterized by the fact that the determina- 
tion of constitution through chemical deg- 
radation, in principle stochastic in its 
methodology, yielded results far more 
swiftly than could the methods of syn- 
thesis, which, having specific targets, 
were consequently far more demanding. 
As the rapidly increasing number and ac- 
companying complexity of constitutional 
hypotheses from degradation outstripped 
the possibilities of synthesis, the demand 
for final proof of constitution through 
synthesis could be satisfied in simple 
cases only, and then often merely in the 
limited form of a partial synthesis. 

The gap between structure determina- 
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