
diseased cats, a preliminary character- 
ization of /3-hexosaminidase in normal 
cat tissues has shown a remarkable de- 
gree of similarity between the human and 
the feline enzyme systems (15). Thus, 
the pattern of neural and visceral gly- 
cosphingolipid storage and the type of en- 
zyme deficiency strongly suggest that the 
feline disease is analogous to human 
GM2 gangliosidosis type 2. 

This report describes the second gan- 
gliosidosis and the eighth lysosomal stor- 
age disease known to occur in domestic 
cats (2). Feline GM2 gangliosidosis, like 
some of the previously described feline 
lysosomal disorders, affords an opportu- 
nity for the study of the pathogenesis and 
treatment procedures applicable to these 
devastating diseases in humans. 
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A major histocompatibility complex 
(MHC) has been reported in at least 11 
mammalian species (1), but it has not 
been described in cattle despite exten- 
sive immunogenetic research on this spe- 
cies (2). Assuming that the various 
breeds of cattle are analogous in some 
respects to the various races of humans, 
we believe that a description of the MHC 
of cattle will help in understanding the 
human histocompatibility system. Fur- 
thermore, because of their size and avail- 
ability, cattle can provide an almost un- 
limited source of material for chemical 
characterization of the histocompatibili- 
ty antigens. 

While studies of the serologically de- 
fined (SD) systems with lymphocytotox- 
ic typing serums have been relatively 
straightforward, studies of the lympho- 
cyte-defined (LD) systems have been 
complicated because they are defined by 
cell culture techniques (mixed lympho- 
cyte culture, MLC) which may yield ca- 
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pricious results and which do not readily 
identify individual specificities. Indeed, 
the enumeration of the number of alleles 
and loci of LD systems is extremely diffi- 
cult (3), although some recent progress 
has been made with newer techniques 
(4). More than a single locus has been de- 
tected only in humans and mice (5), 
which are the only two species that have 
been studied extensively. In both species 
the existence of two loci has been dem- 
onstrated primarily by the detection of 
rare genetic recombinations or by the 
use of homozygous typing cells. 

We have developed an analytical 
method (6) which detects multiple LD 
loci with relative simplicity. We have ap- 
plied this method to 7 families of cattle 
containing an average of 11 adult pater- 
nal half-sibs. The results indicate the 
existence of at least two LD loci. In this 
report, we present a detailed analysis of 
one of these families (7). 

Table 1 shows the results of all paired 
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Table 1. Mean 30-second counts of [3H]thymidine uptake in triplicate paired one-way MLC 
tests on seven paternal half-sibs. The counts in each column (A through G) are compared to 
the isogeneic controls along the diagonal (underscored). 

X-irradiated Responding cells 
stimulating 

cells A B C D E F G 

A 13,833 53,642 43,002 57,728 49,437 64,838 19,268 
B 51,020 9,623 4,386* 9,780* 12,087* 13,334* 36,461 
C 29,035 19,820 2,908 18,788 15,766* 16,665* 19,699 
D 61,813 20,931 39,132 6,666 37,243 82,168 50,079 
E 54,520 33,074 50,136 50,195 10,465 91,146 79,313 
F 60,331 66,151 15,281 14,461 43,379 16,637 47,118 
G 47,570 27,687 41,755 37,749 51,321 70,214 4,824 

*Response not significantly different from controls (P > .05). 
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Lymphocyte-Defined Loci in Cattle 

Abstract. Using the results of all paired one-way mixed lymphocyte culture tests 
on families of half-sibs, we have established that the lymhocyte-defined system in 
cattle contains a minimum of two loci. The methodology presented is applicable to 
studies of the lymphocyte-defined systems of other species. 
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Fig. 2. The seven animals are shown diagram- 
matically in a hierarchy where an animal lo- 
cated above and connected to a lower animal 
stimulated the latter unidirectibnally. Animals 
not connected by a unidirectional pathway 
mutually stimulated one another. Hypotheti- 
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sire were heterozygous for the LD loci, 
as was observed here (Fig. 2). 

These data confirm the expected prop- 
erty of transitivity of nonstimulation. 
Furthermore, the existence of three ani- 
mals in a chain of unidirectional stimula- 
tion has established that the LD system 
in cattle contains at least two loci. 
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