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mated by difference: annual nitrogen fixa- 
tion = (annual nitrogen accretion of the sys- 
tem + annual hydrologic export of nitro- 
gen) - (annual precipitation input of nitrogen). 
The value we report is actually an estimate of 
net fixation: net fixation equals fixation minus 
denitrification. Our estimate of net fixation is 
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surements, there apparently are negligible 
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Hubbard Brook. 

Another possible source of nitrogen input for 
the ecosystem is gaseous uptake of ammonia or 
impaction of nitrogenous aerosols (such as am- 
monium sulfate) on vegetation surfaces. Prelimi- 
nary evidence suggests that these inputs are 
small compared to the nitrogen fixed by micro- 
bial activity. Since our estimate of net microbial 
fixation of nitrogen for the ecosystem is ob- 
tained by difference, uptake of gaseous or im- 
pacted nitrogen would reduce the estimate for 
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Direct measurements of the movement of ni- 
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organic nitrogen + annual transfer of inorganic 
nitrogen in stemflow and throughfall + annual 
transfer of inorganic nitrogen in root exudates). 
In estimating net N-mineralization, it is assumed 
that all inorganic nitrogen entering the soil as 
precipitation input, stemflow and throughfall, 
and root exudates moves directly into the avail- 
able soil nitrogen pool. If this inorganic nitrogen 
entering the soil were first taken up by soil mi- 
croorganisms and then mineralized, our net N- 
mineralization estimate would be larger. 

At the height of the growing season, leaf tis- 
sue in this northern hardwood forest ecosystem 
has a nitrogen content of approximately 70 kg/ 
ha. During senescence, the amount of nitrogen 
in the leaves decreases precipitously. Fresh leaf 
litter contains only about 30 kg/ha. Of the vari- 
ous pathways by which nitrogen may be re- 
moved from the leaves, it is concluded that dur- 
ing senescence almost 40 kg/ha is retranslocated 
from the leaves to the woody tissue of the hard- 
woods (D. F. Ryan, unpublished data). Retrans- 
location is estimated by difference: annual re- 
translocation of nitrogen = (nitrogen content of 
leaves prior to senescence) - (nitrogen content 
of leaf litter + nitrogen in throughfall and stem- 
flow during senescence). In estimating retranslo- 
cation it is assumed that there is no aerosol im- 
paction of nitrogen on leaf surfaces, no direct 
uptake of gaseous nitrogen by leaves, and no 
loss of gaseous nitrogen from leaves. 
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flowing stream to a surface plays an im- 
portant part in many physical and biologi- 
cal processes, such as the filtration of 
fluid-particle suspension, the deposition 
of inhaled particles, and the accumulation 
of particles on the walls of the arterial 
tree. The deposition rate depends on, 
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among other factors, the ratio of the par- 
ticle size to the characteristic length of 
the collector. When this size ratio is suffi- 
ciently large, the collector surface is 
markedly altered as the particle deposit 
accumulates. The change in the surface 
structure, in turn, affects the rate of sub- 
sequent deposition. The dynamic aspect 
of the collector surface clearly has signifi- 
cant effects on the deposition process. 

The manner in which the particle de- 
posit forms on the collector surface is 
strongly influenced by two intrinsic prop- 
erties of suspended particles: (i) their fi- 
nite size and (ii) the randomness of the 
location of individual particles in the fluid 
stream. The purpose of this report is to 
explain how the interplay of these two in- 
trinsic properties leads to the formation 
of chainlike particle dendrites on a col- 
lector such as a fiber in air filtration. 

The structure of solid particle deposits 
on fibers has been observed by a number 
of investigators (1). Although various fil- 
tration theories have been developed 
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since the 1930's (2), none of the existing 
theories makes it possible to predict in a 
detailed manner the process of the cap- 
ture of solid particles by the collector in 
its entirety. In the following discussion, 
we assume that the particle trajectory de- 
pends only on the particle inertia and the 
drag force. This explanation can be read- 
ily extended to other cases where grav- 
itational, electrostatic, and magnetic 
forces are present. 

The finiteness of the particle size gives 
rise to two closely related phenomena, (i) 
a shadowing effect and (ii) chain deposi- 
tion, which are described below. 

The upper part of Fig. 1 depicts the 
cross section of a fiber and three particle 
trajectories, which are obtained by solv- 
ing the equations of motion. Particle a 
which arrives at point C from upstream 
continues to follow trajectory CD until it 
deposits on the fiber at point A. Once it 
has deposited, particle a creates a shadow 
area, represented by arc BiB2, within 
which no particle can deposit. Point B1 is 
the point of contact between the fiber and 
particle b1, which follows trajectory Ei,F 
and just moves past particle a when it is at 
point G. Similarly, point B2 is the point of 
contact between the fiber and particle b2, 
which just escapes capture by particle a 
and deposits on the fiber in its immediate 
neighborhood. The inhibition of further 
deposition within the shadow is clearly an 
important factor which leads to non- 
uniform deposition. 

Table 1. Sequence of particle deposition in a 
simulation, with resulting changes in dendrite 
distribution and collection efficiency. 

Den- 
nitial Type 

n- Collec- 
Patile Initial p drite Particle of size tion 

number tion collec- isi effi- tion tion distri- e- 
bution 

Clean fiber 0.26 
1 17 P (1) 0.56 
2 54 N (1) 0.56 
3 67 N (1) 0.56 
4 37 S (2) 0.79 
5 04 P (2,1) 0.79 
6 92 N (2,1) 0.79 
7 05 S (2,2) 0.79 
8 24 S (3,2) 0.79 
9 62 N (3,2) 0.79 

10 15 S (3,3) 0.79 
11 55 S (4,3) 1.05 
12 12 S (4,4) 1.05 
13 12 S (4,5) 1.05 
14 92 N (4,5) 1.05 
15 81 N (4,5) 1.05 
16 59 S (5,5) 1.07 
17 07 S (5,6) 1.07 

A deposited particle protrudes above 
the fiber surface and hence provides a 
new surface area greater than the area of 
the fiber it occupies. As a result, the par- 
ticle has a greater chance to capture on- 
coming particles than an equivalent fiber 
surface (equal to the projected area of the 
particle) does. When a second particle is 
captured by the first particle, a chainlike 
two-particle dendrite is formed, such as 
that shown in the lower part of Fig. 1. The 

X=-2df 

Fig. 2. Formation and growth of particle dendrites on a fiber. One obtains the particle trajec- 
tories by solving the equations of motion of a particle with a potential flow field around the fiber. 
The trajectories are almost parallel at x = -2df. Values of the physical parameters used are as 
follows: dp (particle diameter) = 1.305 ,m; df (fiber diameter) = 9.6 /m; U (air velocity in the 
main stream) = 13.8 cm/sec; p (particle density) = 1 g/cm3; the corresponding Stokes number 
is (pd U/9 y df) = 0.15, where / is the viscosity of air. 

Fig. 3. Dendrites of 1.305-/am polystyrene latex spheres formed on a single glass fiber 8.7 ,m in 
diameter at an air velocity of 13.8 cm/sec (3). 
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new dendrite has an even greater surface 
area and hence greater capture efficien- 
cy. Thus, the deposition of the first par- 
ticle at a given site touches off a chain 
reaction there. 

The number of dendrites formed on a 
given length of the fiber and the size and 
shape of these dendrites are determined 
by the location of individual particles ar- 
riving from upstream and the order of 
their arrival. Although the concentration 
distribution of suspended particles in the 
stream far away from the surface can be 
considered as uniform, the location of in- 
dividual particles is intrinsically stochas- 
tic in nature. This aspect is particularly 
important in situations where the number 
of particles involved is relatively small, 
such as in the formation and growth of a 
particle dendrite. By taking into account 
the randomness of individual particles to- 
gether with their trajectories determined 
from the equations of motion, we can 
construct a graph depicting the formation 
and growth of dendrites on the collector. 
This process is illustrated in Fig. 2, which 
depicts a quarter of the cross section of a 
fiber with a family of trajectories. 

To construct a graph showing the for- 
mation and growth of dendrites, we first 
find the location y, of individual particles 
arriving at x = -2df. Consider a height 
5dp, which is divided into 100 equal inter- 
vals, numbered consecutively from 0 to 
99 (Fig. 2). (The choices of the height 
and the number of intervals will be dis- 
cussed later.) Since the particle concen- 
tration in the approaching stream can be 
considered as uniform at x = -2df, 
each of these 100 intervals has an equal 
chance to receive the oncoming particles. 
However, because the order of arrival 

among these intervals is stochastic in na- 
ture, a sequence of y's representing the 
location and order of arrival of individual 
particles at x = -2df can be determined 

by a set of random numbers in the range 
of 0 to 99. Column 2 in Table 1 gives a set 
of such numbers, and the dendrites 
formed by this sequence of arrivals are 
shown in Fig. 2. Particle 1, starting from 
position 17 and following its trajectory, 
deposits at point A. Particles 2 and 3, 
starting from positions 54 and 67, respec- 
tively, are too far from the surface to be 
collected. Particle 4, starting from posi- 
tion 37, deposits on particle 1, thereby 
forming a two-particle dendrite. It can be 
seen at this stage that, depending on its 
initial location, a particle can deposit on 
the fiber (primary deposition), can collide 
with a particle dendrite (secondary depo- 
sition), or can continue past the collector. 
These possibilities are indicated by P, S, 
and N, respectively, in column 3 of Table 
1. The construction of a graph such as 
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Y,= 5dpE 99 . 



that shown in Fig. 2 can be considered as 
a simulation. The simulation under con- 
sideration involves only 17 particles. Two 
dendrites are formed, the upper one hav- 
ing five particles and the lower one having 
six particles. Column 4 in Table 1 gives 
the matrix which represents the size of 
the two dendrites in the order of their for- 
mation. The distribution of dendrites is 
asymmetrical over the fiber. For an accu- 
rate simulation the entire front surface of 
the fiber should be considered. 

One of the important parameters in fil- 
tration theory is the collection efficiency 
of single fibers, defined as the ratio 2yoc/ 
df, where yoc is the initial y coordinate of 
the particle which just moves past the col- 
lector. The trajectory of such a particle, 
called the limiting trajectory, moves far- 
ther away from the collector surface 
whenever a newly deposited particle pro- 
trudes in the cross-stream direction 
beyond the old surfaces. This can be seen 
in Fig. 2. The clean fiber has a yO, of 0.13 
df. After the first particle deposits, yoc in- 
creases to 0.28 df. The change in collec- 
tion efficiency is shown in column 5 of 
Table 1 for the simulation under consid- 
eration. 

Repeated simulations with different 
sets of random numbers would generate 
an ensemble of dendrites resembling 
those actually formed on a piece of fiber 
shown in Fig. 3. The number of particles 
used in each simulation is determined by 
the particle concentration, the filtration 
time, and the height used in the simula- 
tion. The only requirement in selecting 
the height is that it should be greater than 
the final value of yo, when the simulation 
is stopped. For simplicity, the simulation 
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is carried out on a single cross section. A 
more realistic construction can be made 
by taking into account the randomness of 
the location of individual particles along 
the fiber length. 

The above discussion explains how the 
interplay of the finite size of particles and 
the stochastic nature of the location of 
individual particles leads to the formation 
and growth of chainlike particle deposits. 
Other important parameters such as the 
Stokes number and the ratio of the par- 
ticle size to the collector diameter would 
also influence the shape of the dendrites. 
Long dendrites tend to form near the 
front of the cylinder at high Stokes num- 
bers, whereas they tend to form near the 
sides at low Stokes numbers. Conceiv- 
ably, the deposit would become increas- 
ingly smoother as the size ratio de- 
creases. An artifact of the simulation is 
that the shape of dendrites also depends 
on the size of the intervals Ayo used. In 
the simulation discussed above, Ayo is 
equal to 0.05 dp. The form of the dendrites 
would become more realistic as the size 
of intervals is further reduced. 
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Pyroelectricity and Induced Pyroelectric Polarization in 
Leaves of the Palmlike Plant Encephalartos villosus 

Abstract. Quantitative pyroelectric measurements were made on the leaves of the 
palmlike plant Encephalartos. A pyroelectric response almost 50 times higher than 
the normal one could be induced by a small bias electric field, offering a means for 
highly increasing the efficiency of conversion of thermal to electrical energy. No 
evidence of ferroelectricity was found. 
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Qualitative observations of the pyro- 
electric effect in the epidermis of the 
leaves of the palmlike gymnosperm plant 
Encephalartos villosus (family Cy- 
cadaceae) were first made by Athen- 
staedt (1). He observed that the orienta- 
tion of the pyroelectric vector was such 
that the outer surfaces of the leaves be- 
came positive on heating. In the research 
we report here, the earlier observations 
were confirmed, proof was found that 
the effects observed are thermally in- 
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duced and not photoinduced, and quan- 
titative values were measured. Most im- 
portant, we found that a pyroelectric po- 
larization almost 50 times higher than the 
normal response could be induced by a 
small bias electric field. This effect, to 
our knowledge not previously observed 
in any other materials, offers a highly in- 
creased efficiency of conversion of ther- 
mal to electrical energy. No evidence of 
ferroelectricity was observed in the ma- 
terial. 
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The pyroelectric effect was measured 
by exposing thin samples of material to 
short rectangular pulses of light from a 
xenon lamp. The electric charges re- 
leased were measured by a charge ampli- 
fier, the output of which was displayed 
on an oscilloscope. The intensity of the 
illumination was determined by calibra- 
tion with tourmaline, and voltage-time 
curves were analyzed according to the 
method of Simhony and Shaulov (2). A 
sample was prepared from a fresh leaf by 
scraping away material from one surface 
with a scalpel until the thickness of the 
other epidermis was in the range 0.06 to 
0.12 mm. A piece about 0.5 to 1.0 cm2 in 
cross-sectional area was cut out. The 
sample was air-dried for 5 to 10 minutes 
and then attached to a copper electrode 
with silver paste. The free surface was 
also coated with silver paste, and electri- 
cal contact was made by means of a cop- 
per spring. The electrical resistance of 
the materials was of the order of 1011 
ohms after preparation and did not 
change significantly over several days, 
indicating that the samples were dry at 
all times. Temperature variation of the 
sample from -20? to 45?C was possible. 

To demonstrate that the electrical re- 
sponse to the light pulses was truly a 
pyroelectric effect and not a photoeffect, 
the light was partially absorbed by a se- 
ries of optical filters. Measurements 
were made with the epidermis samples 
as well as with a copper-constantan 
thermocouple, tourmaline, and bovine 
tendon. The pyroelectric properties of 
tourmaline have been known since antiq- 
uity (3), and tendon was previously 
shown to be pyroelectric by Lang (4), us- 
ing a heating and cooling technique. All 
of the materials examined were painted 
with the same silver paste. Figure 1 
shows the electrical response (relative to 
that with unfiltered light) for each materi- 
al plotted against the 50 percent trans- 
mission points of the filters. For com- 
parison with a typical photosensitive ma- 
terial, a similar curve for a silicon 
photodiode was recorded. The response 
of the epidermis is clearly due to a 
change in temperature, and thus the ef- 
fect is a pyroelectric one. 

The measurement method used gives 
the ratio of the pyroelectric coefficient to 
the product of the density and the heat 
capacity, p/pc (in coulomb cm joule-1). 
Precise values of the density and the heat 
capacity have not yet been determined, 
but estimates of 0.9 g cm-3 and 1.4 joule 
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? standard deviation) of 1.3 + 0.4 x 
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