
As a result of an ecological revolution 
113 to 85 million years ago in the Cre- 
taceous, angiosperms now dominate 
much of the earth's land surface. The 
question of why this displacement of the 

previously dominant tree ferns, horse- 
tails, and gymnosperms occurred rela- 
tively late in geological history-Dar- 
win's "abominable mystery" (1)-has 
prompted much speculation (2). Yet, 
"The problem of why this dramatic 
change in the world's flora occurred at 
this time is still completely unsolved" (3, 
p. 209). 

Angiosperms typically have broad 
leaves, vessel elements for fluid con- 
duction, and alkaloids (which may be de- 
fensive compounds). It has been sug- 
gested that these are superior features 
and that as one or more of them evolved 
the flowering plants were able to out- 
compete gymnosperms. However, broad 
leaves have evolved in gymnosperms 
such as Ginkgo, Gnetum, and Podo- 
carpus. Vessel elements are absent in 
some primitive angiosperms but are 
found in the gymnosperms Ephedra, 
Gnetum, and Welwitschia. Therefore, 
since both groups had the potential to 
evolve these features the question re- 
mains, "Why did vascular systems and 
broad leaves become highly specialized 
in most angiosperm but not in most gym- 
nosperm groups?" Likewise, the pres- 
ence of alkaloids in many angiosperms 
does not provide a simple explanation for 
the ecological revolution. It is not clear 
that the alkaloids used as defensive com- 
pounds are superior to those resins, phe- 
nolics, and tannins that are found in gym- 
nosperms and that are, in fact, retained in 

many angiosperms. 
The unique adaptations of angiosperms 

are reproductive. The ovules are pro- 

tected by a closed carpel. A stigma and 
style allow fertilization soon after pollina- 
tion. Floral parts have evolved that at- 
tract pollinating insects, while the ovules 
are protected from these same potential 
"seed predators" (4). Double fertiliza- 
tion and a triploid endosperm may allow 
the rapid growth of propagules from es- 
sentially primordial ovules (5); this would 
be advantagous in ecological situations 
favoring a rapid life cycle (5, 6) and per- 
haps also an advantage in reducing the 
nutritive value of the ovules at the time 
when the flower is attracting insects. 

Flowering plants are widely involved 
not only with insects, bats, and birds as 

pollen vectors (carriers), but with birds 
and mammals as the major seed vectors. 
A great variety of fleshy as well as hooked 
and barbed fruits and seeds among flow- 
ering plants illustrates this fact. It is not 
surprising, then, that one view has been 
that the evolution of birds, mammals, and 
particularly pollinating insects caused the 
revolution. However, mechanisms that 
could explain how this might have oc- 
curred have not been explicitly proposed, 
largely because of the formidable diffi- 
culties involved. 

If the appearance of pollinating insects 
explains the success of the angiosperms, 
then why the late date of the revolution? 
Flying insects and land plants were pres- 
ent in the Paleozoic. The highly special- 
ized Lepidoptera and Hymenoptera 
probably diversified as a result of the an- 
giosperm revolution, but even several 
groups to which today's important polli- 
nating insects belong are ancient: Dip- 
tera, Coleoptera (Permian), and certain 
Hymenoptera (Triassic) (7). Why did the 
far-reaching ecological merger between 
insects and plants not take place long be- 
fore the mid-Cretaceous if insects were 
the limiting factor? 

On the other hand, if birds and mam- 
mals were the limiting factor, then why 
should their arrival have favored insect- 

pollinated angiosperms over wind-polli- 
nated plants? After all, birds and mam- 
mals disperse the seeds of both groups 
today. Several gymnosperms, among 
them Juniperus, Torreya, Taxus, Podo- 
carpus, Ginkgo, and certain cycads and 
Gnetales, even have fleshy and often col- 
orful seed coverings as adaptations that 
promnote animal dispersal of seeds. 

I shall argue that a mechanism exists 
whereby the appearance of birds and 
mammals could indeed have favored in- 
sect-pollinated plants. A complex set of 
principles underlying the exploitation of 
animals as reproductive vectors for 
plants is emerging from recent studies, 
particularly in the tropics where angio- 
sperm forests first appeared (8) and today 
are essentially dominant. The hew infor- 
mation and new interpretations of well- 
known facts suggest that there is a poten- 
tial interplay between seed and pollen dis- 
persal systems that may be of importance 
in understanding the dominance of angio- 
sperms. 

After presenting my hypothesis and 
discussing the principles on which the ar- 
gument is based, I will suggest ecological 
conditions that may have allowed surviv- 
al of forests dominated by gymnosperms. 
In the United States, at least, the distribu- 
tion of gymnosperms is paradoxical. The 
phylogenetically old coniferous trees typ- 
ically are dominant in some of the more 
severe and rigorous environments. Yet it 
is commonly assumed that the phyloge- 
netically younger angiosperms have been 
"victorious" in evolution because they 
are more adaptable than gymnosperms. 

To shorten the discussion and to facili- 
tate comparisons with coniferous for- 
ests I will refer to angiospermous trees 
throughout the article, even though the 
first angiosperms were probably not can- 

opy trees (6), and the argument actually 
applies more forcefully to subcanopy 
plants. Except where noted, moist, trop- 
ical lowland forests are in mind. The prin- 
ciples can easily be qualified to apply to 
shrubs and herbs; with some caution they 
can also be applied to xeric or cool cli- 
mates. 

The Hypothesis 

1) Insect pollination may allow a plant 
to produce outcrossed offspring when it 

belongs to a population of widely dis- 

persed individuals or of small clusters 
of individuals, where wind pollination 
would be unreliable. 

2) This capacity gained significance on- 

ly when widely foraging seed vectors (ini- 
tially birds) came into existence; such 
vectors could carry large numbers of 
seeds to new areas for colonization, to 
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small widely scattered safe-sites (9), and 
beyond populations of specialized seed 
predators. Thus, in the last two exam- 
ples, efficient seed dispersal allowed the 
adult plants to occupy and become spe- 
cialized for microhabitats where the spac- 
ing patterns made the plants dependent 
on animal pollen vectors. 

3) Plants offering nectars and fruits to 
animals then proliferated, creating niches 
for nectivores and frugivores. This diver- 
sification in turn created new evolution- 
ary possibilities for the plants. Such posi- 
tive feedback loops generated additional 
evolutionary momentum. 

4) With the addition of many new, di- 
verse angiosperms to ecosystems, many 
of the preexisting gymnosperm popu- 
lations were eventually forced by com- 
petition to become so sparse that wind 
pollination (and primitive insect pollina- 
tion) was a liability. 

5) Changing climatic conditions or oth- 
er widespread ecological alterations 
could have accelerated the diversification 
of animal-pollinated plants. For example, 
if the warming mid-Cretaceous climate, 
epidemics, or introductions of alien com- 
petitors caused mortality to increase for a 
hypothetical conifer and angiosperm, 
through insect pollination the angiosperm 
might maintain genetic variability at a low 
density "bottleneck" more readily than 
the wind-pollinated conifer so that it could 
continue to occupy widely scattered safe- 
sites. Hence the angiosperm would stand 
the better chance of evolving adaptations 
to the new conditions. 

Selection for rapid growth strategies 
(and consequently large leaves and ad- 
vanced vascular systems), new systems 
of chemical defense, and a diversification 
of life forms can be viewed as resulting 
from the new ecological and genetic op- 
portunities and the increased variety of 
competitive interactions involving pri- 
marily the flowering plants (10-17). 

I shall assume that the highly complex 
flower organization of angiosperms rep- 
resents a more sophisticated system for 
insect pollination than the systems devel- 
oped in Gnetales, cycads or Ben- 
nettitales. So when animal pollination be- 
came of widespread advantage in ecosys- 
tems, it was largely angiosperms that 
were favored in competition. 

Spatial Distributions and Sex 

There may be advantages to animal 
pollination over wind pollination in sever- 
al situations: for example, where air is 
still, winds unidirectional, wetness con- 
stant, or conceivably where the produc- 
tion of large amounts of pollen would be 
an unbearable metabolic expense. I sug- 
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gest, though, that the critical advantage 
of animal pollination in the Cretaceous 
was to allow genetic exchange between 
widely spaced individuals or small popu- 
lations. This advantage may be signifi- 
cant in several ecological situations. 
Paradoxically, some of these (see para- 
graphs 3 to 5 below) involve species that 
we may see as common and closely 
spaced. 

1) A heterogeneous habitat may be sub- 
divided by specialists. Plant species may 
utilize different conditions of temper- 
ature, soil, sunlight, moisture, and wind 
exposure. Populations that can outcross 
as widely dispersed individuals may often 
have an advantage in that they can adapt 
to a network of small, scattered, safe- 
sites. Predation and competition acting 
on such specialists could confine the pop- 
ulations to even lower densities than 
would result from the mosaic of resources 
alone. 

2) A uniform habitat may be shared. 
Particular habitats might exist that are 
characterized by conditions of soil, mois- 
ture, temperature, and light so congenial 
to plant growth that a great variety of 
plants might grow equally well. Why does 
competitive exclusion not result in an 
elimination of species richness? Pre- 
dation or climatic variability might keep 
the abundance of species low so that com- 
petition would be greatly reduced, as 
studies on intertidal invertebrates seem 
to show (18). Janzen and Connell (19, 20) 
have argued that herbivore and seed- 
predator pressure can maintain the diver- 
sity of tropical trees. This would mean 
that a species of plant would become un- 
common in an area as specialized preda- 
tors evolved. The more widely spaced 
were conspecific plants, the more diffi- 
culty the insects would have in locating 
their prey and in establishing populations 
on their hosts. So at low densities, young 
plants would essentially have enough 
room to "hide" from the pests that are 
seeking them (19, 20). 

3) New habitats may be invaded. It is 
well understood that in a breeding popu- 
lation of a few dozen individuals, genetic 
variability may be lost through random 
processes. Populations passing through 
such a genetic bottleneck (21) may be at a 
disadvantage in competition with geneti- 
cally more variable populations (22, 23). 
Invasions outside of a species' range 
may begin with a few scattered individ- 
uals. Given the invasion of a new hab- 
itat by small numbers of two ecologically 
similar species, the one that can main- 
tain genetic variability in the first 
few critical generations has a competi- 
tive advantage. Insect pollination be- 
tween colonizers could moderate bottle- 
neck effects when colonization begins 

with a few or scattered individuals. 
4) There may be a succession of plant 

communities. Habitats are typically in a 
state of flux. The growth of one plant 
community alters conditions and creates 
a new habitat for a second. Tree falls, 
fires, hurricanes, flooding, disease, land- 
slides, and lava flows all open up new 
habitat even within dense, mature for- 
ests. A minority species may become 
abundant or a new species may disperse 
into the area. In either case there may 
sometimes be a genetic bottleneck that a 
few scattered individuals pass through. In 
this case, or in the cases discussed in 
paragraphs 3 and 5, we might see a very 
common and closely spaced species that 
can trace its original establishment in the 
area to having passed successfully 
through a genetic bottleneck. 

5) Some species may have "waited" 
for appropriate climatic conditions before 
they became abundant. Only a small 
number of species can be common in any 
one time and place. Many species now 
abundant may have passed through ge- 
netic bottlenecks during climatic altera- 
tions [or "taxon" cycles (24)]. 

The scattered, unstable, stream margin 
habitats reconstructed for early angio- 
sperms (6, 25) are relevant in terms of the 
situations described in paragraphs 1, 3, or 
4. 

Could some of the above functions also 
be accomplished by wind pollination? 
The air that we breathe is often full of 
pollen which under certain atmospheric 
conditions may disperse thousands of ki- 
lometers and may even fertilize ovules of 
plants up to tens of kilometers from a for- 
est (26, 27), but this is essentially a resi- 
due that reflects the vast amounts of pol- 
len released from forests or fields. It is not 
thought to reflect a strategy of reliable ge- 
netic exchange between individuals at 
great distances. Fertilization may require 
a pollen "rain" of, say, 106 grains per 
square meter over the recipient plant, 
since a 1-mm2 stigma is a small target. 
Thus, counterintuitively, the individual 
pollen donor has a low probability of pol- 
linating by wind except when it is sur- 
rounded by other individuals (13, 26-29). 

Wind pollination is rare in the tropics 
except possibly in habitats such as savan- 
nahs and marshes dominated by dense 
stands of a few common herbaceous spe- 
cies (13). It becomes common, even 
among angiosperms, in the temperate 
zones (30) where extensive habitats 
dominated by a few species are usual. 
These ecological and geographic patterns 
offer important insights and will be dis- 
cussed in the last section. 

Some ecologists once claimed that in- 
sect pollination is also unreliable for 
widely spaced plants, and that the trees in 
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many tropical forests where individuals 
of a given species are typically separated 
by 50 to 100 m must be self-pollinated. It 
is true that, if possible, insects tend to 
forage in small areas, but through modifi- 
cations of nectar flow, blooming times, 
and even the quality of nectar or pollen, a 
plant can affect the behavior of insects so 
that outcrossing is maximized (26, 29, 31- 
35). Recent studies in Central America re- 
veal that a large fraction of the rare trees 
are in fact obligate outcrossers (32). In 
some cases tropical pollinators patrol or 
"trap-line" long, regular routes through 
the forest. Janzen discussed the impor- 
tance of this behavior and demonstrated 
that marked euglossine bees would return 
to a nest from as far away as 23 km in a 
tropical rain forest (33). In other cases, ag- 
gressive behavior results in individual 

pollinators being driven from one plant to 
another (34). Frankie calculated that even 
a low rate of pollination by such displaced 
individuals will account for fruit-set in 

tropical trees (35). 
The costs of nectars, scents, and flow- 

ers, and the great diversity of complex 
pollination systems among plants, suggest 
that the advantages of animal-maintained 
sexuality are great. But is the sexual 
process necessary? The answer must be 
yes, but not an unqualified yes. The exact 
advantages of recombination and hetero- 

zygosity are being debated (36, 37). In- 

breeding does not always reduce genetic 
variability (38). Many plants, particularly 
weedy and pioneering annual herbs, are 
self-fertilizing (27, 38-40). However, 
since obligate outcrossing plants cannot 
produce seeds except as a result of genet- 
ic exchange, self-fertilization is probably 
an adaptation for temporary niches where 
short life cycles and very rapid reproduc- 
tion have a strong competitive advantage 
(40, 41). In other cases, restricted out- 

crossing may preserve adaptations to lo- 
cal or marginal conditions against genetic 
swamping from the species as a whole. In 

any event, while cross-fertilization is 

commonly obligate, self-fertilization is at 
best only rarely obligate (40). Since self- 
ing populations usually retain the capac- 
ity to outcross at some low rate, I argue 
that, in appreciating the very real advan- 
tages of self-fertilization in some situa- 
tions, we must not lose sight of the poten- 
tially enormous advantages of retaining 
some degree of outcrossing in the vast 

majority of situations (22, 23, 37, 40-42). 
So sexual processes may provide a com- 
petitive advantage in the wide variety of 
ecological situations outlined above. 

However, if animal pollination offers 
such profound advantages, why did not 

angiosperms become dominant much ear- 
lier? The occupation of networks of 
small, scattered safe-sites over many gen- 
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erations requires more than a system for 
maintaining sexuality. It requires an effi- 
cient means of dispersing offspring to new 
safe-sites and those vacated following in- 
festations of pathogens or herbivores, or 
climatic fluctuations (43-45). In other 
words, animal vectors of plant gametes 
and zygotes must work together to al- 
low species of angiosperms to evolve 
"coarse-grained" responses to the envi- 
ronment. This term refers to organisms 
that in effect can select a class of re- 
sources or "grains" out of the environ- 
ment in a nonrandom fashion (46, 47). 
This point, and the significance (for the 
evolution of new plant types) of long-dis- 
tance dispersal of seeds by birds, are dis- 
cussed in the following sections. 

Birds Enter the Ecosystem 

Feathers allow the functional dif- 
ferentiation of the avian wing into a pro- 
pelling outer portion and an inner surface 
that provides lift (48). This is also true of 
bats where the outer portion of the wing is 
supported by the modified "fingers" (49). 
These types of wings were unprecedent- 
ed in evolutionary history and offered 
unique possibilities for adaptive radiation 
into a wide variety of niches for agile 
fliers (48). Pterosaurs were probably not 

counterparts of agile birds moving 
through foliage or feeding off the ground. 
The wing membrane was borne upon a 

single "finger" and the small peculiar feet 
were not obviously adapted for perching 
or running. The bones were extraordinar- 
ily thin. Because of these limitations 
there has been much speculation on 
pterosaurs' way of life. Aerodynamically 
they may have functioned as modified, 
powered, Rogallo kites, and the largest 
perhaps depended on sea breezes (50). 

Archaeopteryx of the upper Jurassic al- 

ready had the basic avian wing elements, 
and there were aquatic birds of diverse 
modern groups worldwide dating from 
early and particularly late Cretaceous 
marine deposits. Even the "primitive" 
Hesperornis and Ichthyornis were ad- 
vanced in general construction. There is 
little direct fossil evidence that Cre- 
taceous terrestrial birds existed. But fos- 
sils of small terrestrial animals, including 
arthropods, are poorly represented in the 
Cretaceous. And since the aquatic avi- 
fauna were well developed early, Ar- 

chaeopteryx was a land bird, and a di- 
verse representation of modern terres- 
trial birds "appeared suddenly" in the 
early Tertiary, the conclusion is virtually 
inescapable that there was a major radia- 
tion of land birds during the Cretaceous 
(51). On the other hand, the first bat fossil 

appears in the Eocene (52), and so I shall 

say little about the role of bats in the early 
evolution of flowering plants. How could 
birds have had a major impact on plant 
communities? 

With the adaptive radiation of birds, 
the world of a plant must have changed 
significantly as a result of the introduction 
of two new factors: a large increase in the 
incidence of long-distance dispersal and 
new patterns of local dispersal. 

Flapping or gliding flight allow a bird to 
travel any given distance at a much lower 
metabolic cost than a terrestrial animal 
can and, of course, to travel the distance 
much more quickly (53). Many birds con- 
sequently forage daily over broad areas of 
several kilometers (54) and over dis- 
tances of thousands of kilometers during 
migration. Recent studies show that 
seeds may be carried in the gut of some 
migrants much farther than once thought: 
up to 200 to 300 hours (55). High propor- 
tions of bird-dispersed plants on oceanic 
islands show the effectiveness of birds in 

long-distance dispersal (56). 
Endothermy, with its high metabolic 

demands, probably evolved in con- 
junction with flight, if not earlier for some 
other reason (57), and so the flight capa- 
bilities, high-energy requirements, and 
hence the foraging patterns of early birds 

probably had basic similarities to those of 
modern birds. This could mean that early 
in the Cretaceous, the seeds of many 
plants-not simply those specialized for 
local dispersal by animals-were being 
carried to locations well outside of their 
traditional ranges in the guts (and on the 
surfaces) of birds, and were being depos- 
ited in envelopes offertilizer. 

Long-Distance Dispersal 

We can assume that with the adaptive 
radiation of birds, numerous plant spe- 
cies were being repeatedly tested by se- 
lection in new habitats. It may have been 

largely the insect-pollinated species that 
benefited from a high rate of "experimen- 
tation" because of their presumed ability 
to preserve and generate genetic variabil- 
ity in founder populations of scattered in- 
dividuals. These are the sorts of circum- 
stances under which species might enter 
new adaptive zones and from which 
"large evolutionary events" might result 
(58). 

The dispersal of plants beyond the 

ranges of coadapted predators, herbi- 
vores, and diseases could facilitate the es- 
tablishment of new populations (59, 60, 
61). "Previously unoccupied habitats are 

very important in the production of new 
populations because an invading species 
often leaves its predator and pest popu- 
lations behind, allowing it to enter a new 
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habitat more readily than a resident spe- 
cies can expand its population to use the 
same resources" (19, p. 521). On a broad 
geographic scale we may recall the often 
dramatic (and often tragic) success of 
plants and animals once they gain a foot- 
hold on new continents free from disease, 
predators, or effective competition (61). 
New adaptive plant types so generated 
might then be dispersed by birds into still 
other habitats, not only increasing the 
species variety within communities but 
with potentially profound alterations of 
these, with competition possibly forcing 
residents into low-density bottlenecks 
(62). 

Man's history of transporting wild ani- 
mals shows that attempts to introduce 
species had often, though not always, to 
be repeated (at considerable expense) 
even though the final attempt sometimes 
resulted in the species swarming over is- 
lands or continents (63). I picture birds as 
having played a similar role with plants 
because of the birds' stereotyped habits 
and tendency to travel rapidly over great 
distances. Birds repeatedly transported 
moderately large seeds from marshes, 
tree falls in forests, xeric rain shadow 
habitat mosaics, in one region to similar 
habitats in other regions. These points are 
particularly important. It is critical not to 
confuse the issue of the evolution of eco- 
logical dominance by angiosperms with 
the question of their actual origin. The 
major problem now is to explain the re- 
placement of gymnosperms by angio- 
sperms as elements of mature and stable 
ecosystems where "phenotypic" com- 
petition is great (K selection) and open 
genetic recombination and moderately 
large seeds may be critical. In unstable, 
ecotonal situations, simply rapid repro- 
duction (and sometimes self-fertiliza- 
tion)-selection for r-and wind dis- 
persal of small seeds may be adaptive. 

Wind may have carried seeds to new 
habitats in the Mesozoic. Safe-sites for 
seeds being larger than stigmas as sites 
for pollen, the haphazard nature of wind 
dispersal may not have been so serious 
for seeds as it was for pollen. Never- 
theless, the density of seeds that reach a 
given site declines as a function of dis- 
tance (and also depends on the wind pat- 
terns). Large seeds can generally not be 
carried as far as tiny, highly specialized 
seeds, such as those of orchids or cotton- 
woods (Populus). This is significant be- 
cause large numbers of seeds with moder- 
ate food reserves for seedlings should, 
theoretically, favor a resident in com- 
petition with a few tiny seeds from a for- 
eign invader. Without minimizing the im- 
portance of occasionally successful in- 
troductions of plants with wind-dispersed 
seeds over long distances, we should 
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clearly distinguish between the success 
that a plant may have in invading a local 
habitat for which it is adapted, by blan- 
keting the region with seeds, and the rela- 
tive difficulty that only a few of its seeds 
may have in invading a new area with a 
spectrum of indigenous competitors (23, 
63). 

In short, birds may have substantially 
increased the rate at which moderately 
large seeds were transported into new 
areas (64), and the evolutionary con- 
sequences could have been profound if 
new species of angiosperms were added 
to ecosystems faster than gymnosperms 
were. Obviously, the model is based on 
today's typical and somewhat general- 
ized pollinating animals, not the host-spe- 
cific types where the plants cannot estab- 
lish themselves beyond the range of a par- 
ticular pollinator (for example, some or- 
chids). 

Efficient Local Dispersal 

Birds and, later, bats and also terrestri- 
al mammals must have increased the effi- 
ciency of many local dispersal functions 
such as transport beyond concentrations 
of seed predators and to widely scattered 
safe-sites, for which only reptiles, wind, 
and water were previously available as 
vectors. We can imagine that birds and 
mammals began to feed on large fleshy (or 
nutlike) fruits and seeds adapted for dino- 
saur dispersal. Possibly the very first an- 
giosperms were habitat specialists with 
patchy (65) distributions (not necessarily 
trees in tropical forests) that remained 
low in abundance and diversity for mil- 
lions of years because of the low efficien- 
cy of reptilian dispersal of seeds. Alterna- 
tively, birds and mammals began feeding 
upon seeds, possibly of species adapted 
for disturbed (or "weedy") situations 
(5, 6), that were previously distributed 
by wind or water. Adaptations, particu- 
larly for avian dispersal, might have 
evolved in either case because of the 
advantages of birds in transporting mod- 
erately large seeds within minutes, and 
reliably, to safe-sites hundreds of meters 
and even several kilometers away from 
the parent plant. 

It should be to the plant's advantage to 
distribute its annual seed crop in, say, 
several hundred bird droppings rather 
than in the feces of a handful of "small" 
dinosaurs. Also, the agility, coordina- 
tion, and size of birds allow them often to 
take seeds and fruits directly and selec- 
tively from branches with minimal dam- 
age to the plant, and for some seeds and 
fruits to bypass potential fungal disease 
or insect attacks on the ground. 

The ecology of local seed dispersal is a 

deceptively complex subject (45, 66, 67). 
Because of space limitations I have only 
touched superficially upon some aspects 
of bird and mammal dispersal of seeds 
(68). Birds and mammals have high meta- 
bolic demands and large brains relative to 
reptiles. These features make them po- 
tentially reliable yearly visitors to a fruit- 
ing tree or shrub once they have located 
it. Further, high metabolic rates may lead 
to relatively rapid passage of food 
through the guts of birds and mammals, 
providing "high quality seed treatment," 
by reducing the effects of harsh chemicals 
and mechanical action, and reducing the 
need for a hard seed coat. Since not all 
animals that eat fruits provide "quality 
dispersal" there may be intense com- 
petition for certain types of animal vec- 
tors, resulting in the diversity of fruit 
types and fruiting seasons in a commu- 
nity. Thus some fruits are highly special- 
ized for dispersal by particular animals, 
while generalized strategies have been 
adequate for other species. Still others 
have apparently reverted to seed dis- 
persal by wind even in the tropics 
(66-69). 

We can do little more than wonder if 
the Mesozoic reptiles were reliable (70) 
visitors and sufficiently diverse (71) to 
provide "quality dispersal" to more than 
a few species of plants in any one area. If 
their behavior, physiology, size, or diver- 
sity did limit them, then the proportions 
of widely spaced specialists in commu- 
nities may well have remained low simply 
because of this factor. 

In any event, I see the ecological revo- 
lution as resulting from a combination of 
factors including (i) an accelerated rate of 
species formation in which angiosperms 
were favored, (ii) widespread ecological 
changes in plant community interactions 
resulting from this, and not least from (iii) 
an increase in the capacity of ecosystems 
to absorb many animal-maintained plants 
so that the gymnosperms were "diluted" 
and the reliability of their wind pollina- 
tion was reduced to the point where many 
were unable to adapt to the changes as 
easily as angiosperm competitors were. 

Modern Community Trends 

Organisms have evolved many diverse 
ways of life and, not surprisingly, there 
are individual counterexamples to sever- 
al generalities that I use in support of the 
hypothesis. Further, it is not simple to put 
species into categories. What is a species 
of widely spaced individuals? Perhaps 
most species which are common in some 
part of their range are rare in another: 
Which should we focus upon? Under 
which condition did reproductive pat- 
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terns actually evolve? Which condition 
had the strongest influence on the evolu- 
tion of a species that has "always" had 
both sparse and dense populations within 
its total range? 

Yet the propositions may hold as 
trends and perhaps we may begin to ap- 
proach tests of generality by focusing on 
geographic and ecological regularities. 
Studies in Costa Rica (69) indicate that in 
a 700-hectare wet forest, of the 185 spe- 
cies studied (65 to 75 percent of all tree 
species in the area) only 7 percent dis- 
perse their seeds by wind; in eight sub- 
sites of a 20,250-ha dry forest with 113 
species studied (? 80 percent of all spe- 
cies), 32 percent of the trees disperse 
their seeds by wind. These and other 
studies (67) also show that the wind-dis- 
persed tropical trees are apt to be among 
the emergent or secondary forest species 
and that animal dispersal characterizes 
the shorter trees (and shrubs) of climax 
forest. A correlation between wind dis- 
persal and low species richness has been 
observed along a gradient in the Great 
Smoky Mountains (although not in Ohio) 
(72). Abiotic dispersal in very species- 
poor tropical habitats is thought to be 
common (12, 66). 

These data raise the question of wheth- 
er wind dispersal and low species rich- 
ness are correlated in turn with a reduc- 
tion in availability of animal vectors (12, 
66), much wind (13), reduced seed-preda- 
tor pressure or seed-predator satiation 
(12, 13), or with greater availability of 
safe-sites simply because of a reduced va- 
riety of interspecific competitors. Further 
studies of community patterns are needed 
to provide answers to these questions. 

What limits for the parameters of 
height, mean crowding (65), patchiness, 
extensiveness of stands, mass of pollen 
produced per individual, will allow re- 
liable outcrossing in a wind-pollinated 
population? At what threshold does a re- 
duction in recombination become a hand- 

icap in competition? How much spatial 
"dilution" will a wind-pollinated species 
faced with competition tolerate? A num- 
ber of gymnosperms and angiosperms are 

wind-pollinated and animal-dispersed (and 
others vice versa). Under what con- 
ditions might animal-promoted "seed 
flow" be able to compensate, despite a 
time lag, for a reduction in gene flow 

through ineffective pollen exchange? Val- 
ues are not available for making estima- 
tions for particular species. There are, 
however, ecological and geographic pat- 
terns and these suggest some degree of 

regularity in the adaptations of species to 
their environments. For example, wind 
pollination is common in the temperate 
zones and uncommon in most tropical 
habitats (13, 30). A detailed study of spac- 
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ing patterns and reproductive biology in 
whole communities along ecological gra- 
dients might provide insight into ques- 
tions raised by my hypothesis. 

Survival of Coniferous Forests 

If only a few species of gymnosperms 
had survived in scattered refugia they 
would be no more remarkable than any 
other relict plant or animal group. How- 
ever, many parts of the earth, particularly 
at high elevations and latitudes, are domi- 
nated by dense coniferous forests. Ap- 
parently there were limits to the rapid ad- 
vances that the angiosperms were making 
some 100 million years ago. What were 
they? 

Wind pollination may be of no particu- 
lar disadvantage where individuals are 
closely spaced. Thus, in areas where spe- 
cies richness is low, wind pollination 
might be tolerated or even favored, and 
competitive superiority might be decided 
purely by features other than pollination. 
Severe ecological conditions combined 
with prior occupancy may act as a "fil- 
ter" against invasion by all but a few se- 
lect species (73). Thus we might expect 
gymnosperms to have survived in, and to 
be specialized for, geographically exten- 
sive habitats characterized by nutrient- 
poor substrates, acidic soils, water- 
logged soils, drought, frequent fires, cold 
surface or soil climates, short growing 
seasons or, conceivably, conditions unfa- 
vorable for pollinating insects. 

Why is it that in the United States con- 
ifers are dominant in some of the most 
severe and rigorous environments? The 
answer is, perhaps, that present-day con- 
ifers are adapted to rigorous conditions 
because these have characterized large 
"ecological islands" low in species rich- 
ness and conducive to wind pollination 
for millions of years. [Indeed, the high 
densities under which many gymnosperm 
species may have originated might have 
themselves produced harsh soil condi- 
tions (10).] Thus, there is a common de- 
nominator to the great coniferous forests 
of cold and northern regions, the piion- 
juniper forests that are extensive 
throughout areas of cool, relatively dry 
winters and hot dry summers, the fre- 
quently burned closed-cone and other 
pine forests, southern coniferous forests 
on sandy soils, and acidic bogs. (Several 
such habitats are geologically young and 
have been occupied only recently by 
Pinus and Juniperus.) 

This hypothesis does not predict that 
gymnosperms will dominate all harsh or 
species-poor habitats: only that they may 
be able to survive somewhere within a 
range of conditions that would be re- 

garded as stressful for elements of adja- 
cent species-rich communities. Angio- 
sperm-dominated mangrove, chaparral, 
and alpine habitats, for example, are 
harsh by most standards, but with 349 
families and 12,334 genera of angio- 
sperms (3) it is hardly surprising that 
many of these dominate in situations 
where exceptional adaptations are neces- 
sary. As angiospermous ecological coun- 
terparts of gymnosperms evolve, angio- 
sperms may gradually replace gymno- 
sperms today even in many species-poor 
situations. Wind-pollinated angiosper- 
mous trees such as alder, ash, aspen, 
beech, birch, elm, hazel, and oaks domi- 
nate many northern areas. 

How the extensive coniferous forests 
of coastal Washington and Oregon con- 
form to the prediction is not obvious. In- 
deed, the factors producing the vegeta- 
tion in this area have long been a puzzle. 
The mild, wet climates here, as well as in 
Asia, may simply provide refuges for cer- 
tain conifers as is commonly assumed. 
On the other hand, much of Washington 
and Oregon were affected by glaciation, 
and the soils are young and poor (74, 75). 
It has recently been argued that an unusu- 
al combination of mild winters and cool 
but dry summers (74-78) may allow con- 
ifers to compete successfully with angio- 
sperms since conifers are both drought 
resistant and can also use the wet, cool 
fall, winter, and spring for photosynthesis 
(75, 79). Angiospermous trees in this area 
tend to dominate only along rivers, in hot 
habitats, and sometimes in early seral 
stages-where the rivers moderate the 
summer soil dryness, or where the heat 
excludes the local species of conifers, or 
where red alder or big-leaf maple some- 
times become established until slower 
growing spruce or hemlock shade them 
out (75). More detailed studies both in the 
Pacific Northwest and in Asian temperate 
forests would help to resolve the different 
possibilities for the persistence of conif- 
erous forests in these areas (80-83). 

Paleoecological studies show that fire 
has been important in determining the 
dominance of conifers in some northern 
areas previously thought to be directly 
under climatic control (84). The south- 
eastern United States has a generally 
warm, moist climate; however, studies in 
Florida show that the distributions of 
pines and cypress are controlled by fire, 
poorly drained soils, and flooding, rather 
than directly by climate (85). 

I am not arguing that rainfall and mean 
annual temperature extremes are unim- 
portant in plant distribution. Simple cli- 
matic data may be necessary but not suf- 
ficient to explain why many areas in the 
United States are dominated by conifers 
and others not (86). It follows that it is 
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unsafe to view the habitats of gymno- 
sperms in the rest of the world in only 
general climatic terms. The situation in 
most tropical areas is even more poorly 
understood than in the United States. 
Though the data are few, some general- 
izations can be made. 

Pines have been relatively well studied 
in the tropics. In tropical Asia, Central 
America, and the Antilles pines dominate 
where fires occur every 5 to 20 years. 
More frequent burnings produce grass- 
land; less frequent burnings permit angio- 
sperm forest. Where annual precipitation 
is high, it may take a severe dry season to 
favor pine. The effects of fire are com- 
pounded by shallow, poor soils, acidic 
parent rocks, low precipitation, and low 
temperature. Extensive porous and well- 
drained soils may be poor in nutrients and 
these and shallow soils may have little 
water-holding capacity, thus exposing 
the vegetation to water stress when pre- 
cipitation is reduced (87). So the many 
tropical species of Pinus form forest in 
rigorous situations and conform to pre- 
dictions. 

Havel (88) and Webb and Tracey (89) 
argued that araucarias are a common ele- 
ment of tropical and subtropical forest 
types where "broadleaves" are reduced 
in density and height because of unfavor- 
able soil or climatic conditions (90, 91). 

Species of conifers existing as scat- 
tered individuals in broad-leaved forest 
are a tangential issue to the question of 
why forests dominated by conifers con- 
tinue to exist. Yet they are still of consid- 
erable interest to this discussion. Do they 
have special genetic, physiological, or 
other adaptations that allow them to func- 
tion as community members? 

The gymnosperms Agathis, Dacrydi- 
um, and Podocarpus are said to be found 
mixed with angiosperms in rich lowland 
tropical forests (92), although some are 
also found at higher elevations and lati- 
tudes and commonly in impoverished 
tropical heath forest (17, 92, 93). Since 
species richness declines in these last sit- 
uations, we should focus the search for 
exceptions on the fertile lowlands. It has 
frequently been suggested, for these and 
other tropical conifers, that present-day 
mixed forests represent a stage in transi- 
tion to complete angiosperm dominance 
(93), or alternatively, a successional stage 
following widespread disturbances or cli- 
matic change. For this reason among oth- 
ers discussed, more study is required be- 
fore we can pinpoint individual excep- 
tions to my generalizations among the 
lowland tropical forest conifers or among 
those of New Caledonia or southern 
China (94). I do expect some exceptions 
to predictions, but I have not yet found 
good examples. 
6 MAY 1977 

The biology of nonconiferous low-lati- 
tude gymnosperms is also of interest. An- 
imal dispersal of seeds is probably com- 
mon in Cycadales and Gnetales (67) and 
circumstantial evidence suggests some 
insect pollination (26). Such plants lack 
obvious, complex specializations for in- 
sect pollination, but it would be instruc- 
tive if (despite inferior specializations) 
insect pollination and seed dispersal by 
animals have contributed in any way to 
their survival and competitive potential. 

Conclusions 

It is obvious that different spacings of 
the members of a population of organisms 
can have profound, immediate, and long- 
term consequences for the individual and 
its offspring. However, only recently have 
ecologists begun to explore these in de- 
tail. The demographic and genetic impli- 
cations are particularly intriguing for 
rooted plants when the typical individual 
is separated from sites favorable for the 
growth of seedlings and from other repro- 
ductive members of its population. Prob- 
ably most species of higher plants have 
achieved some degree of "directed move- 
ment" through adaptations that cause an- 
imals to carry their reproductive cells. Ef- 
ficient vectors of seeds may allow the 
evolution of specialist plant species that 
can exploit rare or patchily distributed re- 
sources. However, the genetic con- 
sequences of diffuse spacing patterns for 
a population must also be considered. 
Without an efficient means of pollen dis- 
persal such a population could face re- 
duction in sexual recombination. Then 
the potential to specialize for widely scat- 
tered resources would be counterbal- 
anced by a decline in the genetic re- 
sources that we assume are important for 
the generation of new adaptations. In 
such examples the evolution of animal- 
dispersed pollen and seeds would ideally 
go hand in hand. 

Animal-dispersed and pollinated plants 
abound today in the subcanopy of moist 
tropical forests where reduced wind and 
the patchy availability of sunlight and 
other resources may interact to give great 
advantages to such systems. One could 
assume that the tripartite coevolutionary 
strategy proposed here (disperser-pol- 
linator-angiosperm) matured and diver- 
sified first in the moist tropical subcanopy 
plant community. In that case, one de- 
rived evolutionary condition would be 
represented by the abiotically dispersed 
trees that are not poorly represented 
among emergent trees and particularly 
among trees of less species-rich tropical 
forests. 

Additional derived conditions may 

have evolved as the angiosperms spread 
poleward into the temperate latitudes (or 
alternatively protoadapted forms spread 
poleward). Here extensive areas are 
dominated by only a few species. Several 
groups of angiosperms have reverted to 
wind pollination, others to abiotic seed 
dispersal, and some to both. Wind-polli- 
nated conifers dominate vast areas as 
well. Although abiotic dispersal and polli- 
nation are major components of the tem- 
perate ecosystems with which many of us 
are most familiar, it is well to bear their 
special nature in mind. 

Abstract 

Birds and mammals are important seed 
dispersers and their diversification in the 
Cretaceous may have created niches for 
many plant specialists on scattered re- 
sources. Maintaining sexual recombina- 
tion through wind pollination in such 
sparse populations is difficult, and so an- 
giosperms with their sophisticated sys- 
tems for insect pollination were favored 
in many critical situations. 
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