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Enzymatic detoxication reactions pro- 
tect mammals against the potentially toxic 
effects of foreign compounds to which they 
are almost continuously exposed. Oxida- 
tive, reductive, hydrolytic, and conjugative 
reactions transform the compounds to me- 
tabolites that usually have reduced biologi- 
cal activity or are more readily excreted 
from the body. Although most detoxica- 
tions occur in the liver after absorption, it 
is advantageous to the organism if detoxi- 
cation occurs before absorption, that is, in 
the case of oral exposure while the com- 
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pounds are still in the alimentary canal. 
The epoxide moiety, whose presence in or- 
ganic compounds often confers high bio- 
logical activity (1), is reduced in the rumen 
in appreciable quantity to an olefin, a reac- 
tion which may represent a significant 
detoxication mechanism. 

Studies on the metabolic behavior in 
steers of the insect juvenile hormone mim- 
ic 1-(4'-ethylphenoxy)-3,7-dimethyl-6,7- 
epoxy-trans-2-octene (1) (Stauffer R- 
20458), labeled with 14C in the phenyl ring, 
indicated that the compound was totally 
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Epoxide to Olefin: A Novel Biotransformation in the Rumen 

Abstract. Studies with an insect juvenile hormone mimic and the insecticide dieldrin 
have shown that enzymatic processes in the rumen reduce the epoxide moiety in these 
compounds to an olefin. This reaction is apparently microbial in origin and does not in- 
volve an observable intermediate. Epoxide reductions in the digestive tract of ruminants 
and possibly other mammals may be important in the detoxication of biologically active 
epoxides, including pesticides, alkylating agents, and carcinogens. 
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metabolized and the label was excreted al- 
most quantitatively in the urine and feces 
after oral treatment at 0.05 mg/kg (2). 
Analysis of the excreta revealed numerous 
metabolites, and in the feces one product 
behaved the same on thin-layer chroma- 
tography (TLC) as the diene analog 2. The 
possibility that 2 was metabolically derived 
from 1 was intriguing because in vivo re- 
ductions of epoxide to olefin have not been 
reported in higher animals. However, 2 
was a trace contaminant (less than 1.0 per- 
cent) in the '4C-labeled preparation of 1 
given the steer; thus the possibility that 2 
had passed unabsorbed and unmetabolized 
through the digestive tract could not be to- 
tally discounted. This did not seem likely 
because 2 is highly lipophilic and should be 
readily absorbed through the gut wall and 
it undergoes rapid metabolism in other 
mammalian enzyme systems (3). Addition- 
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ples, 36 percent of the starting epoxide 1 
was converted to the diene 2, but there was 
no similar reduction in abomasum or small 
intestine fluids. The conversion of 1 to 2 by 
the rumen fluid was clearly an enzymatic 
reaction because essentially no 2 was 
formed during the incubation of 1 with ru- 
men fluid in which the enzyme activity had 
been destroyed by boiling. Incubation of 1 
with rumen fluid at a higher concentration 
(5 x 10-4M) yielded sufficient 2 to permit 
isolation on a milligram scale and sub- 

sequent confirmation of structure by 
NMR, GLC-mass spectroscopy, and the 
formation of derivatives. 
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ductions of epoxide to olefin in the rumen 
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with ovine rumen fluid for 18 hours result- 
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as aldrin by GLC-mass spectroscopy and 

by peracid oxidation back to dieldrin as 
confirmed by GLC-mass spectroscopy. As 
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liver (8), but clearly there is no hepatic in- 
volvement in the transformations reported 
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4,5-epoxy steroids to 3-keto-1,4-diene de- 
rivatives has been reported (9). This, and 
the fact that the rumen is rich in microbial 
activity, strongly suggests that the con- 
versions of epoxide to olefin observed in 

my study are microbial in origin. However, 
initial attempts to culture rumen orga- 
nisms capable of catalyzing this reaction 
have not been successful (10). 

These studies establish only that con- 
versions of epoxide to olefin occur in the 
rumen, a highly reductive environment 

(11), but such reactions may also occur in 
the digestive tract of other mammals. The 
diene 2 and related compounds have been 
observed by Hoffman et al. in the feces of 
rats treated intraperitoneally with very 
high doses of 1 (12). However, Hoffman et 
al. speculated that these products arose 
from 2 present as an impurity in the treat- 
ment preparation, and thus were not true 
metabolites of 1. Because my studies show 
that conversions of epoxide to olefin do oc- 
cur in the digestive tract of at least some 
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mammals, it seems possible that the diene 
analogs of 1 observed in the rat arose 
through biliary or intestinal (13) excretion 
of 1 or its metabolites (or both) from the 
intraperitoneal administration, followed 
by epoxide reduction in the intestine. Con- 
versions of epoxide to olefin within the di- 
gestive tract may thus represent a signifi- 
cant metabolic pathway in mammals for 
potentially toxic epoxides, which include 
alkylating agents, carcinogens, and some 
pesticides. In the case of dieldrin, epoxide 
reduction is not a detoxication because the 
aldrin produced is itself toxic and its major 
metabolic transformation is epoxidation 
by liver oxidases back to dieldrin (14). 
However, reduction of the epoxide moiety 
in other compounds can be expected to di- 
minish biological activity in cases where 
the olefin is not readily reepoxidized, or by 
allowing sufficient time for additional 
biodegradation to occur before reepoxida- 
tion. It also seems likely that reductions of 
epoxide to olefin in the digestive tract may 
function nutritionally in the reduction of 
oxidized foodstuffs such as fatty acid epox- 
ides and cutin acid epoxides. 

G. WAYNE IVIE 

Veterinary Toxicology and Entomology 
Research Laboratory, Agricultural 
Research Service, U.S. Department 
of Agriculture, College Station, 
Texas 77840 
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Antagonism of Stimulation-Produced Analgesia 

by Naloxone, a Narcotic Antagonist 

Abstract. Analgesia produced byfocal electrical stimulation of the brain is partially re- 
versed by the narcotic antagonist naloxone. The absence of complete reversal does not 
appear to be caused by inadequate doses of naloxone since doses higher than I milligram 
per kilogram of body weight did not increase the antagonism. It is suggested that stimu- 
lation-produced analgesia may result, at least in part, from release of an endogenous, nar- 
cotic-like substance, such as that recently reported by other investigators. 
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Focal electrical stimulation of the brain 
produces analgesia in the rat, the cat, and 
in man (1-4). This stimulation-produced 
analgesia exhibits several striking features 
in parallel with the analgesia produced by 
narcotic drugs. Both appear to exert their 
effects at sites surrounding the third ven- 
tricle, the cerebral aqueduct, and rostral 
portions of the fourth ventricle (2, 5, 6). 
Drugs that affect transmission in central 
monoamine pathways alter both morphine 
analgesia and stimulation-produced anal- 
gesia (7, 8). Morevoer, tolerance develops 
to the analgesic effect of brain stimulation 
and cross-tolerance between morphine 
and brain stimulation occurs (9). We 
report now that stimulation-produced 
analgesia can be partially blocked by 
the narcotic antagonist naloxone. This 
observation has important implications for 
the neural mechanisms of pain inhibition. 
A preliminary report of some of these 
findings has been made (10). 

Forty-one male Sprague-Dawley rats 
were used. A single bipolar electrode con- 
structed of twisted stainless steel wire (0.2 
mm in diameter), Teflon-coated except at 
the cut cross section of the tips, was im- 
planted in the periaqueductal gray matter, 
an area known to yield particularly potent 
and reliable analgesia (1, 2, 11). Analgesia 
was measured in a modified version of the 
D'Amour and Smith tail-flick test (12), in 
which one records the latency of the spinal- 
ly mediated withdrawal reflex of the tail in 
response to the application of radiant heat. 
The apparatus and procedure have been 
described (7). The radiant heat source was 
adjusted to produce a baseline latency 
(BL) of 3.5 to 4.5 seconds. Following brain 
stimulation, if the animal did not respond 
within 7.0 seconds, the heat was automati- 
cally shut off in order to prevent tissue 
damage. The degree of analgesia (DA) due 
to brain stimulation was expressed as per- 
centage and derived from the ratio of ac- 
tual change in response time (T) from 
baseline to the maximum possible change 
according to a formula adapted from Ben- 
son et al. (13) 

DA = 100 (T- BL)/(7 - BL) 

Following recovery from surgery, ani- 
mals were screened to determine appropri- 
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ate parameters of brain stimulation. 
Trains of 60-hertz sine-wave current 100 
msec in duration were delivered at a rate of 
3 per second for 20 seconds. For each ani- 
mal, two current intensities were deter- 
mined, one producing an intermediate de- 
gree of analgesia (30 to 60 percent), the 
other yielding total analgesia (100 per- 
cent). During screening, current intensity 
was raised in steps of 10 ua (peak-to-peak) 
until a 100 percent DA was observed. Cur- 
rent intensities above 200 pa were not em- 
ployed. Once determined, current intensity 
was held constant throughout the experi- 
ment. Only animals exhibiting minimal 
motor and sensory side effects during stim- 
ulation were employed in these studies. 
In each test session, a BL was ob- 
tained by averaging three trials separated 
by 2-minute intervals. Analgesia was then 
assessed in three additional trials each im- 
mediately preceded by 20 seconds of brain 
stimulation. Since analgesia usually out- 
lasted the period of brain stimulation, suf- 
ficient time was allotted between stimu- 
lation trials to permit pain responsiveness 
to return to prestimulation levels (normal 
BL). 

For all experiments, animals were given 
three testing sessions, each separated by 2 
days. These are referred to as predrug, 
drug, and postdrug sessions. In the predrug 
session, animals were injected with a 
matched volume of the naloxone vehicle 
(0.9 percent saline) and were tested 20 min- 
utes later to obtain a BL score, then a DA 
score after brain stimulation. The drug ses- 
sion was identical except that animals re- 
ceived naloxone instead of vehicle. The 
postdrug session was identical to the pre- 
drug session. 

In an initial experiment, nine animals 
were stimulated at an intensity yielding 
100 percent DA. As shown in Fig. 1A, the 
predrug vehicle control did not affect anal- 
gesia. However, naloxone (1 mg per kilo- 
gram of body weight) reduced DA to a 
mean of 62 percent. Stimulation-produced 
analgesia was affected by naloxone in sev- 
en of the nine animals; and, in these, DA 
scores under the drug ranged between 7 
and 89 percent. The DA was significantly 
higher in the postdrug session than in the 
drug session (P < .05, one-tailed t-test). In 

961 

ate parameters of brain stimulation. 
Trains of 60-hertz sine-wave current 100 
msec in duration were delivered at a rate of 
3 per second for 20 seconds. For each ani- 
mal, two current intensities were deter- 
mined, one producing an intermediate de- 
gree of analgesia (30 to 60 percent), the 
other yielding total analgesia (100 per- 
cent). During screening, current intensity 
was raised in steps of 10 ua (peak-to-peak) 
until a 100 percent DA was observed. Cur- 
rent intensities above 200 pa were not em- 
ployed. Once determined, current intensity 
was held constant throughout the experi- 
ment. Only animals exhibiting minimal 
motor and sensory side effects during stim- 
ulation were employed in these studies. 
In each test session, a BL was ob- 
tained by averaging three trials separated 
by 2-minute intervals. Analgesia was then 
assessed in three additional trials each im- 
mediately preceded by 20 seconds of brain 
stimulation. Since analgesia usually out- 
lasted the period of brain stimulation, suf- 
ficient time was allotted between stimu- 
lation trials to permit pain responsiveness 
to return to prestimulation levels (normal 
BL). 

For all experiments, animals were given 
three testing sessions, each separated by 2 
days. These are referred to as predrug, 
drug, and postdrug sessions. In the predrug 
session, animals were injected with a 
matched volume of the naloxone vehicle 
(0.9 percent saline) and were tested 20 min- 
utes later to obtain a BL score, then a DA 
score after brain stimulation. The drug ses- 
sion was identical except that animals re- 
ceived naloxone instead of vehicle. The 
postdrug session was identical to the pre- 
drug session. 

In an initial experiment, nine animals 
were stimulated at an intensity yielding 
100 percent DA. As shown in Fig. 1A, the 
predrug vehicle control did not affect anal- 
gesia. However, naloxone (1 mg per kilo- 
gram of body weight) reduced DA to a 
mean of 62 percent. Stimulation-produced 
analgesia was affected by naloxone in sev- 
en of the nine animals; and, in these, DA 
scores under the drug ranged between 7 
and 89 percent. The DA was significantly 
higher in the postdrug session than in the 
drug session (P < .05, one-tailed t-test). In 

961 


	Cit r198_c313: 


