
rence of Circulina meyeriana Klaus, Pati- 
nasporites densus Leschik, and Para- 
circulina quadruplicis Scheuring with the 
uppermost range of the bisaccate species 
Alisporities minutisaccus Clarke, Min- 
utosaccus potoniei Maidler, and Protodip- 
loxypinus gracilis Scheuring (23) restricts 
the geologic age of the Moroccan material 
to from middle to early late Carnian and 
defines the Minutosaccus-Patinasporites 
Concurrent Range Zone (18). This age and 
its suggested radiometric equivalent of 205 
million years for the Carnian (7) are con- 
gruent with a radiometric date of 196 4- 20 
million years for the basalts overlying the 
Oukaimeden Sandstone. 

The presence of the Minutosaccus-Pati- 
nasporites Concurrent Range Zone in Eu- 
ropean localities is indicated in the English 
Arden Sandstone (by concurrence of Cir- 
culina meyeriana Klaus, Patinasporites 
densus Leschik, and Protodiploxypinus 
gracilis Scheuring) (13), in the Swiss upper 
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Leschik, and Protodiploxypinus gracilis 
Scheuring) (10), and in several North Sea 
localities (by the range overlap of Circu- 
!ina meyeriana Klaus and Minutosaccus 
potoniei Madler) (8). Its presence in the 
North American Dockum Group of Texas 
is also indicated, by the concurrence of 
Minutosaccus potoniei Maidler (16) and 
Patinasporites densus Leschik (14). 

Thus, the pollen data indicate that the 
upper part of the Triassic section in Mo- 
rocco is a time-stratigraphic equivalent of 
the European upper Gipskeuper and 
Schilfsandstein Formations of the Alpine 
Forelands (9, 10), the type Carnian section 
of Austria (11), and the Arden Sandstone 
and Keuper Marls of England (12, 13). Be- 
cause of the common occurrence of age- 
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stratigraphic equivalent of lower portions 
of the Newark Group in the Taylorsville 
and Richmond basins of Virginia and the 
Deep River basin in North Carolina, as 
well as the Dockum Group of Texas and 
New Mexico, and the Chinle Formation of 
Arizona and New Mexico (14). Prelimi- 
nary data suggest that it is also of com- 
parable age to the lower and middle New 
Oxford Formation, Gettysburg basin, 
Pennsylvania (15), and is older than most 
Newark Group sediments in New Jersey 
and New England, which are of Rhaetic to 
Liassic age (15, 21). 

Because the Triassic beds are syntecton- 
ic and were laid down in zones of active 
rifting (1), these data demonstrate that rift- 
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were deposited at a time of active rifting 
during the Carnian stage. Clearly, an im- 
portant large-scale tectonic event occurred 
during Carnian time that is related to the 
subsequent breakup of Pangea and the 
opening of the Protoatlantic basin. 
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Abstract. Fish from petroleum-contaminated sites in the marine environment have ele- 
vated levels of benzopyrene hydroxylase activity in liver and gill tissue. This sublethal re- 
sponse appears to be a practical biological monitor for marine petroleum pollution. 
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We recently demonstrated that ben- 
zopyrene hydroxylase (E.C. 1.14.14.2) is 
induced in fish by exposure to petroleum 
(1). Besides establishing a directly measur- 
able sublethal response, we speculated on 
the potential of enzyme induction as a bio- 
logical monitor for petroleum hydrocar- 
bons in the sea. A field trial has now been 
carried out. 

The cunner (Tautogolabrus adspersus 
Walbaum, 1792) was selected as a suitable 
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species for the trial (2). This nonmigrant 
fish stays near its home territory through- 
out the year (3) and is plentiful and easy 
to trap. Its range extends from New- 
foundland to Chesapeake Bay (4). Cunners 
were collected at four sites (Fig. 1). Livers 
and gills were immediately removed from 
the fish and frozen in Dry Ice for transport 
to the laboratory. Extracts were prepared 
and benzopyrene hydroxylase activity was 
measured as previously described (1). Site 
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I was within 200 m of the outfall of a mod- 
ern oil refinery, whose effluents satisfy cur- 
rent Canadian government guidelines. Site 
2 was a small-craft harbor (5) where traces 
of oil were occasionally visible on the wa- 
ter surface. As far as we could determine, 
petroleum contamination of sites 3 and 4 
was minimal or nonexistent; these are con- 
sidered "clean" for the purpose of this re- 
port. 

Liver hydroxylase activity was signifi- 
cantly higher in fish from petroleum-con- 
taminated sites (Table 1). Hydroxylase ac- 
tivity was generally low in gill tissue, but 
was readily detectable in all fish from site 
1; in contrast, hydroxylase activity was in- 
distinguishable from zero in fish from con- 
trol site 3. We have found similar low 
or nondetectable hydroxylase activities in 

gill tissue of other marine fish that have 

Table 1. Benzopyrene hydroxylase specific activ- 
ity in liver and gills of cunner. Sites are de- 
scribed in the text. Specific activity refers to ar- 
bitrary units of fluorescence of alkali-soluble re- 
action product (3-hydroxybenzo[a]pyrene) per 
milligram of protein (1); values are 
means w- standard deviations. Average fish 
weights did not vary among sites; fish were not 
sexed. Sites 1 and 2 differed significantly from 
controls (t-test; P < .005 for liver activity be- 
tween sites 1 and 4; P < .025 for gill activity be- 
tween sites 1 and 3). There was no significant 
difference between control sites 3 and 4. 

Specific activity 
(units per milligram 

Site N of protein) 

Liver Gill 

1 (Refinery) 10 53.2 ? 25.2 0.27 ? 0.23 
2 (Harbor) 8 46.6 ? 6.7 
3 (Control) 10 16.0 i 7.6 0.0 
4 (Control) 9 19.9 ? 6.6 

540 530 

Fig. 1. Fish sampling sites on the Avalon Peninsula, Newfoundland, Canada. 
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varying levels of liver enzyme activities (6). 
We suggest that petroleum hydro- 

carbons were acting as inducers at sites 1 
and 2. In view of the difficulties encoun- 
tered in monitoring petroleum compounds 
in the marine water column (7), ben- 
zopyrene hydroxylase induction may be 
considered a monitor for petroleum con- 
tamination to complement direct chemical 
measurement. Induction also represents a 
sublethal response that can be rapidly and 
easily monitored from such point sources 
of petroleum as oil refineries, tanker oper- 
ations, and offshore drilling rigs, and thus 
may be of interest to environmental 
agencies (8). The lethal effects of petro- 
leum have been documented for many 
aquatic organisms, but recommendations 
on the permissible levels of petroleum in 
the marine environment should also in- 
volve knowledge of specific effects at sub- 
lethal concentrations. We believe that this 
field study supports our earlier thesis that 
benzopyrene hydroxylase measurement 
has practical application in the study of the 
effects of petroleum hydrocarbon pollu- 
tants in the sea. 

J. F. PAYNE 
Environment Canada, Fisheries and 
Marine Service Biological Station, 
St. John's, Newfoundland, 
Canada AIC IAI 
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