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In the last 2 years a sweeping new 
theory of critical phenomena has been 
proposed. Although primarily a result 
of new physical insight, the advance 
involves group theory in some forms of 
its expression. 

Everyone knows that when water 
boils at 100?C, a dramatic change in 
the density of the liquid takes place as 
it turns to gas. But when water boils 
at higher temperatures, as it must if 
the pressure is greater than atmospheric 
pressure, the change of density that 
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table such as that given in Fig. 1. Often 
it is convenient to think of groups not 
as composed of particular objects such 
as numbers or rotations, but as a set of 
abstract elements subject to the com- 
bination rule expressed by a multipli- 
cation table. In this more general view, 
groups with the same number of ele- 

I Identity: Don't move square 

a Rotate square 90? counter- 
clockwise 

b Rotate square 180? counter- 
clockwise 

c Rotate square 270? counter- 
~ clockwise 

d Flip over square around axis K-K.- 

e Flip over square around axis L-L 

f Flip over square around axis M-M 

g Flip over square around axis N-N 
g amFlip over square around axis N-Nd=g 

Example: a *d=g 
~ AV 
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occurs in the liquid-to-gas transition 
decreases until at a sharply defined 
critical temperature it disappears en- 
tirely. Above the temperature of 374?C, 
water exists only as steam. All liquid- 
gas systems behave in a similar way, 
though the critical temperatures vary 
widely from one substance ito another. 

But liquid-gas systems are examples 
of only one type of critical phenom- 
enon. Liquid solutions, biopolymers, 
superfluids, liquid crystals, alloys, super- 
conductors, and ferromagnetic metals 
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ments and the same multiplication table 
are essentially identical. The enumera- 
tion of all abstract groups-which have 
been compared to the grin that remains 
when the Cheshire cat fades away-and 
the determination of their properties are 
the basic tasks of group theory. 

-A.L.H. 
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Fig. 1. A finite group with eight elements. (Kenneth Smith] 
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all undergo phase transitions that are 
also classed as critical phenomena. If 
a nickel magnet is heated, its magneti- 
zation decreases until it abruptly 
vanishes at 354?C, the critical tempera- 
ture. At room temperature the crystal 
structure of a brass alloy composed of 
equal numbers of copper and zinc 
atoms is very regular, with atoms of 
the two metals located at alternate 
sites in a cubic lattice. But when the 
alloy is heated, the pattern becomes 
less regular, as measured by x-ray or 
neutron scattering, until it is completely 
destroyed at 466?C. Yet another 
example of a critical phase transition 
occurs in liquid helium. Below the 
critical temperature of - 271.0?C, 
helium can exist in a superfluid phase. 
But above that temperature the super- 
fluid, which has many unusual proper- 
ties, disappears. 

By about 1965 it was clear that the 
classical theories of phase transitions 
were inadequate to describe critical 
phenomena, and in the following years 
many theorists began to realize that 
different classes of critical behavior 
are related in ways that are essentially 
independent of the physical details of 
the different systems. While the critical 
temperatures of various systems depend 
on specific physical details, such as the 
strength of a molecular force or the 
interatomic spacing in a lattice, the 
qualitative aspects of critical behavior 
are apparently independent of those de- 
tails and constant, not only within 
classes of critical phenomena, but also 
from one class to another. 

For example, the difference in den- 
sity between liquid and gas-for water 
or any other liquid-decreases as the 
temperature approaches the critical 
temperature (T,) with the particular 
functional dependence (T - Tc) . The 
exponent p has been measured to be 
very nearly 1/3. The magnetization of 
nickel and the degree of order in brass 
approach zero with the same qualita- 
tive dependence on temperature, and 
again f8 is nearly /3. Furthermore, f 
is only one of the so-called critical 
exponents that seem to have the same 
values for many different classes of 
critical phenomena. Besides an ex- 
ponent to describe the coexistence of 
different components, the complete 
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description of the thermodynamic prop- 
erties of a system nearing the critical 
point requires a critical exponent (a) 
to describe the rate of divergence of 
the specific heat, a critical exponent 
(y) associated with the divergence of 
the compressibility or magnetic suscep- 
tibility, and a critical exponent (8) 
related to the critical isotherm. 

A number of semiphenomenological 
theories were developed in ;the mid- 
1960's to explain the apparent univer- 
sality of the critical exponents-that is, 
for example, that f/ is apparently the 
same for many classes of three-dimen- 
sional systems-and to specify the 
values of the exponents. Benjamin 
Widom at Cornell University, Ithaca, 
New York, and Leo Kadanoff at 
Brown University, Providence, Rhode 
Island, were among those who pro- 
duced essentially equivalent 'theories. 
These theories gave relations among 
the critical indexes, but did not predict 
actual values for them. 

In 1971 Kenneth Wilson, at Cornell, 
dramatically changed the status of 
theories of critical phenomena by pre- 
senting for the first itime an analytic 
approach to the calculation of the 
critical exponents of three-dimensional 
systems. Wilson's theory is based on 
the suggestion that if you change the 
scale of length when observing critical 
phenomena, the problem is not altered 
in any essential way. The operations 
involved in rescaling the length can be 
described by a group, which Wilson 
calls the "renormalization group." It is 
technically only a semigroup, because 
it has no inverse. 

A magnetic phase transition is a 
good example of how critical phenom- 
ena change when the scale of length 
is changed. The relevant parameters 
are temperature, magnetic field, and 
the correlation of adjacent magnetic 
domains. If the scale of length (the 
number of atoms per unit length in the 
crystal) were changed, the values of 
the other parameters would also 
change. But suppose you had two ex- 
perimenters measuring the various pa- 
rameters of the magnet, including 
length, with meters that were calibrated 
differently. Suppose magnetic energy 
were measured in units of temperature 
(kT), where k is the Boltzmann con- 
stant, and temperature were measured 
as the percentage deviation from the 
critical temperature (T- Tc)/TT. Full 
scale on one experimenter's tempera- 
ture meter might represent 1 percent 
deviation from criticality, while full 
scale on the other experimenter's meter 
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might represent 1/10 percent deviation 
from criticality. Nevertheless, as long 
as temperatures were near the critical 
point, the recalibration of the other 
meters could be arranged so that the 
results seen by the two experimenters (if 
length is changed) will appear to be 
identical. The situation just described 
is, of course, not physically realistic be- 
cause the intermolecular distances in a 
crystal are not parameters that can be 
freely altered. However, very near a 
critical point, phenomena become more 
and more independent of atomic length 
and energy scales. Hence the univer- 
sality of critical phenomena. 

The mathematical operation of re- 
normalization is in effect the recalibra- 
tion of the meters. The group property 
of closure is satisfied by the renormal- 
ization group because if you made two 
suitable recalibrations of the meters the 
result would be equivalent to another 
recalibration. Because the scale of the 
length meter could be changed by any 
amount, as long as the scales of the 
other meters were properly coordinated, 
the renormalization group is a con- 
tinuous group. (Essentially all infinite 
groups that describe topological trans- 
formations are continuous.) 

Predominance of Geometry 
Wilson not only established detailed 

reasons for believing that the ideas of 
renormalization and universality were 
appropriate for critical phenomena. He 
also developed a theory which pre- 
dicts that the values of critical ex- 
ponents depend only on a very general 
symmetry property related to the rota- 
tions and reflections of atomic spin 
(which is also a group property), and 
on the number of spatial dimensions 
of the physical system. (A thin film is 
a system with two dimensions rather 
than three.) Critical phenomena ap- 
pear to depend much more on geom- 
etry than on physical detail. 

The equations developed by Wilson 
from his renormalization group ap- 
proach could predict all the critical 
exponents for systems of any spin 
symmetry in any dimension, but they 
are extremely difficult to solve. In 1972 
Wilson and Michael Fisher, also at 
Cornell, reported another major ad- 
vance, which for the purpose of making 
practical calculations is just as impor- 
tant as the first. Noting that the classi- 
cal theory of phase transitions predicts 
a particularly simple form for systems 
of more than four dimensions-for in- 
stance, the critical exponent y becomes 
1-Wilson and Fisher developed a cal- 

culation starting from a simple solution 
in four dimensions to find values for 
the critical exponents in the more 
realistic situations with three, two, and 
one dimensions. Specifically, they per- 
formed a perturbation around four di- 
mensions in order to solve the equa- 
tions by expressing the dimensionality 
as d 4 - , and treated e as a small 
continuous parameter. The perturbation 
technique has proved extremely power- 
ful for predicting the values for critical 
exponents and their variations with 
the symmetry properties of various 
systems. 

The fact that life, at least as far as 
critical phenomena are concerned, be- 
comes much simpler in the fourth 
dimension is not instantly comprehen- 
sible to many people. Fisher explains it 
in the following way. If a person walks 
at random on a line or on a surface, 
he is certain to encounter any lamp- 
post on the line or fall into any hole in 
the surface if he keeps walking long 
enough. But if a person walks around 
in three dimensions, for example, on 
a mammoth lattice or jungle gym, there 
is already a finite chance that he will 
miss some point. So there is a major 
difference between two and three di- 
mensions. Now if two people are 
moving around in two or three di- 
mensions, their paths are certain to 
cross, if they walk long enough. But 
in four dimensions, not only is there 
a good chance the walkers never will 
meet one another, but they have a 
finite chance of never seeing any trace 
of the other's path, no matter how long 
they walk. This indicates that in four 
dimensions processes that happen in 
different parts of the space-even if 
they spread through it-are more in- 
dependent than in three or fewer di- 
mensions. 

The recent work of Wilson has 
drawn together explanations of many 
diverse physical effects into a coherent 
and esthetically pleasing theory. How- 
ever, the work may have an even wider 
impact because the behavior of sub- 
stances near critical points is analogous 
to many other problems. According to 
Kadanoff, studies of the growth of 
polymer chains, the Kondo problem 
(how a magnetic impurity behaves in 
a metal), well-developed turbulence, 
and the many particle interactions that 
are observed in high-energy physics 
may all yield way when approached 
with the same mathematical techniques 
that have unified the understanding of 
critical phenomena. 

-WILLIAM D. METZ 
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