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that intermanual transfer can occur with 
terminal display even though the subject is 
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In the course of screening suibstances 
whose intracranial administration might 
affect electrical self-stimulation or stim- 
ulus-bound eating, we have found his- 
tamine to be capable of influencing 
both behavioral modalities. The pres- 
ence of histamine in the mammalian 
central nervous system has been known 
for some time (1), although its role in 
behavioral homeostasis is currently ob- 
scure. The regional distribution of his- 
tamine in the brain is virtually identical 
to that of noradrenalin and serotonin 
(2), and its subcellular localization is 
predominantly synaptosomal (3). The 
brain also contains abundant quantities 
of the enzymes that govern histamine 
metabolism: histidine decarboxylase, 
histimine N-methyltransferase, diamine 
oxidase, and monoamine oxidase (4). 
At least one of these enzymes, the 
N-methyltransferase, is predominantly 
synaptosomal (3). 

We examined the effects of small 
intracranial doses of histamine on self- 
stimulation in rats and found it to be 
a potent inhibitor of this phenomenon. 
Intracranial canniula electrodes were im- 
planted in 20 250-g male Sprague- 
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Dawley rats with the use of a Kopf 
stereotaxic apparatus. Nembutal was the 
anesthetic. Cannula electrodes, made 
from No. 23 hypodermic electrodes 
insulated except for the tip of the can- 
nula insert, were placed in the left peri- 
fornical region of the lateral hypothala- 
mus. With the tooth bar set 3.1 mm 
above the ear bar, the electrodes were 
implanted 0.0 mm posterior to bregma, 
1.3 mm lateral to the midline, and 8.5 
mm below the skull. A bipolar elec- 
trode of comparable diameter was 
placed in the contralateral perifornical 
area. After the experiment half of the 
animals were perfused with formalin 
and prepared for histological examina- 
tion. Sections 50 /tm thick were cut 
and stained with cresyl violet. Place- 
ments were verified to be in the peri- 
fornical area. 

The cannul,a electrode permitted in- 
jection of compounds into the site of 
electrical self-stimulation. The contra- 
lateral electrode was used as a control. 
Cannula electrodes in the septum were 
3.0 mm anterior to bregma, 0.0 mm 
lateral to the midline, and 6.0 mm 
perpendicular to the skull. Electrodes 
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in the lateral ventricle were 1.0 mm 
posterior to bregma, 2.0 mm lateral to 
the midline, and 5.1 mm perpendicular 
to the skull. 

Thresholds for self-stimulation were 
obtained by determining that amount 
of current which would maintain lever- 
pressing for 30 seconds. Whenever an 
animal failed to reach this criterion the 
current was raised 10 percent. When 
the animal met the criterion the current 
was lowered 10 percent. 

Chemicals were obtained from com- 
mercial sources and were of the highest 
quality available. All substances were 
dissolved in physiologic buffer and in- 
jected with Hamilton syringes in vol- 
umes no greater than 1 ttl. Repeat 
injections were made only after thresh- 
olds had returned to the level before 
treatment. Control injections were ap- 
propriate volumes of physiologic buffer 
alone, with osmolarity appropriately 
adjusted for drug concentration with 
NaCl. 

Over the range of 1 to 8 nmole, 
histamine injected into the perifornical 
area caused an immediate dose-related 
elevation of self-stimulation thresholds, 
which returned over the next 20 min- 
utes to within 10 percent of the level 
before treatment (Fig. 1). No change 
in threshold was obtained with buffer 
alone. All changes were independent of 
the order of administered dosages. 
Thresholds to self-stimulation on the 
contralateral perifornical electrode were 
unchanged by the ipsilateral injec- 
tion. 

Prior treatment with cannula injec- 
tions of 1 jul of an antihistaminic 
(either diphenhydramine, 40 nmole; or 
chlorpheniramine, 36.5 nmole) com- 
pletely prevented the effect of 8 nmole 
of histamine injected 5 minutes later. 
At these dosages the antihistaminics 
alone did not alter thresholds. At 
higher dosages, chlorpheniramine (60 
to 200 nmole) consistently lowered 
thresholds whereas diphenhydramine 
(45 to 180 nmole) consistently ele- 
vated thresholds, both in a dose-related 
fashion. 

Injection of 100 nmole of histidine, 
the amino acid precursor of histamine, 
elevated the threshold to self-stimula- 
tion but only after an initial delay of 
6 to 10 minutes (Fig. 2). Prior treat- 
ment with either antihistaminic pre- 
vented this effect. The histamine metab- 
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olite imidazoleacetic acid (30 nmole) 
failed to alter self-stimulation thresh- 
olds, whereas the metabolites methyl- 
imidazoleacetic acid (30 nmole) and 
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Histamine: Effect on Self-Stimulation 

Atbstract. When injected discretely into the lateral hypothalamus of rats, 
histamine inhibited electrical self-stimulation at the injection site without affecting 
self-stimulation in the contralateral lateral hypothalamus. This effect was blocked 
by prior treatment with antihistaminics. Histidine, the amino acid precursor of 
histamine, produced a similar effect after a delay of 6 to 10 minutes. 
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methylhistamine (30 nmole) were only 
one-sixth as potent as histamine. The 
metabolically unrelated congener 2- 
methylimidazole (30 nmole) was with- 
out effect. Other neuronally active sub- 
stances were examined for their effect 
on self-stimulation thresholds. Glycine 
or y-aminobutyric acid (30 nmole) 
had no effect, whereas equimolar con- 
centrations of glutamate, glutamine, or 
carbachol all lowered thresholds. Nor- 
adrenalin (30 nmole) lowered thresh- 
olds in two animals and elevated the 
threshold in three others. Prostaglandin 
E1 was without effect. The local anes- 
thetic Xylocaine (75 nmole) elevated 
the threshold for more than 30 min- 
utes, and the effect was not prevented 
by prior treatment with antihistaminics. 

Similar effects were obtained, usually 
with a 1- to 2-minute delay, if the 
histamine was injected directly into the 
lateral ventricle in animals self-stimu- 
lating on a bipolar electrode in the 
lateral hypothalamus. In addition, ani- 
mals self-stimulating on cannula elec- 
trodes in the septum also showed 
marked inhibition in response to can- 
nula histamine injections. At similar 

dosages histamine also inhibited stimu- 
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Fig. 1 (left). Effect of histamine on self-stimulation thresholds. 
Elevation of self-stimulation thresholds is shown for five ani- 
mals self-stimulating on lateral hypothalamic cannula electrodes 
in response to four histamine dosages ranging from 1 to 8 
nmole. The dark line is the median for the five animals. Hista- 
mine was injected in Krebs-Ringer solution, pH 7.4. Control in- 
jections, which had no effect, were made with buffer alone 
to which had been added appropriate quantities of NaCl to 
achieve osmolarities the same as histamine-containing solutions. 
Tests were run daily for no more than 90 minutes. Effects were 
independent of order of administered dosage. Training of ani- 
mals was conducted during 1-hour sessions over 4 to 7 days. Ex- 
periments were begun when an animal demonstrated a stable 
threshold for 1 hour on three consecutive days. Thresholds 
ranged from 50 to 450 i/a. Fig. 2 (right). Effects of histi- 
dine on self-stimulation thresholds. Cannula injections of histi- 
dine (100 nmole) were made in four animals self-stimulating 
on lateral hypothalamic cannula electrodes. The dark line is 
the median for the four animals. Controls were the same as for 
Fig. 1. 

lus-bound eating, elevating the thresh- 
old for eating by exactly the same 
amount as that for self-stimulation. 

The effects of small doses of hista- 
mine and the production of a similar 
effect with the precursor histidine (with 
a time-delay appropriate for its possi- 
ble conversion to histamine) suggest 
that this mechanism may be physio- 
logically functional. The doses of hista- 
mine used are considerably larger than 
endogenous levels (5). However, this 
has been a common problem when 
bioamines have been studied in similar 
situations. The immediate onset and 

rapid termination of the effect is con- 
sistent with transmitter-like function. 
The complex pharmacologic actions of 
antihistaminics (6) renders the inter- 
pretation of their action in antagonizing 
the histamine effect difficult. However, 
it is tempting to speculate that the 
effect may derive from antagonism at 

specific histamine receptors. It is pos- 
sible that histamine may be acting 
through a secondary transmitter. How- 
ever, the extreme rapidity of the onset 
of its action mitigates against this argu- 
ment. Alternatively, but much less 
likely, histamine could be causing an 

extremely transient lesion unrelated to 

physiologic action. If this were so, it is 

surprising that antihistaminics so readily 
oppose histamine action. It is hoped 
that further elucidation of the mecha- 
nism will sort out these possibilities. 

CAL K. COHN 

GORDON G. BALL, JULES HIRSCH 

Rockefeller University, 
New York 10021 
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