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Observers of living organisms since 
Galileo have recognized that metabolic 
activities must somehow be limited by 
surface areas, rather than body vol- 
umes. Rubner (1) observed that heat 

production rate divided by total body 
surface area was nearly constant in 

dogs of various sizes, and proposed the 

explanation that metabolically produced 
heat was limited by an animal's ability 
to lose heat, and thus total body sur- 
face area. When more precise methods 
of measurement became available, 
Kleiber (2) noticed that when rate of 
heat production is plotted against body 
weight on logarithmic scales for ani- 
mals over a size range from rats to 
steers, the points fall extremely close 
to a straight line with slope 0.75 (Fig. 
1). The result has since been confirmed 
for animals as different in size as the 
mouse and the elephant (3-5), and has 
been verified for other metabolically 
related variables, such as rate of oxygen 
consumption (6). Excellent reviews of 
the problem are available (7-10). 

While it is often true that biological 
laws are not derivable from physical 
laws in any simple sense, Kleiber's rule 
may be one of those fortuitous excep- 
tions which D'Arcy Thompson (11) 
suggests lie at the basis of a funda- 
mental "science of form." Plants as 
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well as animals must be built strongly 
enough to stand under their own 
weight. In the following, a general rule 
is derived for the changing proportions 
of idealized trees as a function of scale, 
and later the results are applied to 
animals. 

Buckling 

Consider a tall, slender cylindrical 
column of length 1 and diameter d 
loaded by the force P, representing the 
total weight of the column, acting at 
the center of mass. Such a column will 
fail in compression if the applied stress 
P/A, where A = 7rd2/4, exceeds the 
maximum compressive stress, OaUax. Pro- 
vided that the column is slender enough, 
it may also fail in what is known as 
elastic buckling, whereby a small lateral 
displacement (caused, for example, by 
the smallest gust of wind), allows the 
weight P to apply a toppling moment 
which the elastic forces of the bent 
column below are not sufficient to re- 
sist. In this case, "slender enough" 
means that I/d is greater than 25, a 
range which includes virtually all trees 
(12). The critical length for buckling 
is related to the diameter by: 

r,. = 0.851 E E d23 (1) 

where p is the weight per unit volume 
and E is the elastic modulus of the 
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(13) showed that when the force due 
to weight is distributed over the total 
extent of the column instead of being 
taken as acting at the center of mass, 
the critical height becomes: 
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This result is identical to Eq. 1, with 

only a change in the numerical con- 
stant. It may be demonstrated that an- 
other change in the constant occurs 
when the solid cylinder is made hol- 
low, provided that the thickness of the 
wall is proportional to the diameter. 
Greenhill further showed that if the 

shape of the column is taken as a 
cone, or a paraboloid of revolution, the 
result is again only to change the nu- 
merical constant. Recently, Keller and 
Niordson (14) have derived that the 
tallest self-supporting homogeneous ta- 

pering column is 2.034 times as tall as 
a cylindrical column made of the same 
volume of the same material, and that 
the distance to the top of such a taper- 
ing column above any cross section is 
proportional to the diameter of that 
cross section raised to the 2/3 power. 
The rule requiring height to go as 
diameter to the 2/3 power is thus in- 
dependent of many details of the model 
proposed for the elastic stability of 
tree trunks. 

Bending 

The limbs of trees must also be pro- 
portioned to endure the bending forces 
produced by their own weight. If a 
branch is considered to be a cantilever 
beam built into the trunk, there exists 
a particular beam length 1er for which 
the tip of the branch extends the great- 
est horizontal distance away from the 
trunk (15). Branches longer than lcr 
droop so much that their tips actually 
come closer to the trunk. Suppose that 
the purpose of branches is to carry 
their leaves out of the shadow of higher 
branches, and therefore to achieve a 
maximum lateral displacement from 
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the trunk. Then the limb should grow 
no longer than I,., where 

lrcr=C El d%/d (3) 

and C depends only on the droop angle 
01, which in turn depends only on the 
angle at which the limb leaves the 
trunk (15). The result may be made 
general for a tapered or hollow limb 
exactly as was done for the buckling 
problem. Comparing Eqs. 1, 2, and 3, 
it is apparent that elastic criteria set 
length proportional to the 2/3 power 
of diameter in both the trunk and the 
branches. 

It should be possible to check the 
validity of these results by measuring 
the proportions of trees of different 
scale. Such a check would be arduous 
if it were necessary to know E and p 
for each species; fortunately, the ratio 
E/p is quite accurately constant in 
green woods (16, 17). In Fig. 2, the 
trunk diameter 1.525 meters from the 
ground is plotted against the total 
height for 576 individual trees, repre- 
senting nearly every species found in 
the United States. The data, taken pri- 
marily from the American Forestry 
Association's "Social register of big 
trees" (18), include specimens both 
very slender and very stout, since trees 
are eligible for this list according to 
their bigness, an index depending on 
the sum of their circumference and 
height (19). A solid line representing 
Eq. 2 is also shown in Fig. 2; it was 
calculated for E= 1.05 X 105 kilo- 
grams per square meter and p = 6.18 X 
102 kilograms per cubic meter (16). 
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The broken line, which fits near the 
center of the data points, has the same 
slope as the solid line but represents a 
sequence of trees whose height in each 
case is only one-fourth of the critical 
buckling height. The conclusion seems 
to be that the proportions of trees are 
limited by elastic criteria, since there 
are no data points to the left of the 
solid line. 

Animal Proportions 

Just as trees must assume thicker 
proportions with increasing size, so 
must animals adjust their shape with 
scale. The argument has long been 
offered that animals could not remain 
geometrically similar from the small to 
the large because their limbs, whose 
cross-sectional area increases as the 
square of characteristic body dimension 
L, must then support a weight which 
increases as La (7). The difficulty with 
these arguments based on strength cri- 
teria is the inevitable conclusion that 
animals may grow no larger than a size 
which makes the applied stress equal 
to the yield stress of their materials. 
Animals larger than this size would 
have to increase supporting areas di- 
rectly with weight, so that no increases 
in height could be tolerated, only in- 
creases in width. If yield stress were 
the only criterion, an animal with 
slender proportions like the bobcat 
should be capable of attaining the same 
absolute height as the lion. In fact, 
it is widely found that some animals 
grow larger than others, and animals of 

100 
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small scale are relatively more slender 
than those of large scale (see cover). 
Perhaps this transformation occurs, as 
in differently sized trees, for reasons 
based on elastic rather than strength 
criteria. 

In the following, we consider com- 

parisons between animals of the same 
family, so that their shape is grossly 
similar. The only change in shape per- 
mitted is for lengths to bear a specified 
relationship to diameters: all lengths 
will be proportional to one another, as 
will be all diameters. Each limb, bone, 
or muscle will thus have a length I 
and diameter d, where length will be 
taken as a measurement parallel to the 
direction of tension or compression and 
diameter will be measured perpendicu- 
lar to this direction. Thus, the length 
of the trunk is the distance between 
shoulder and hip s hether the animal 
is bipedal or quadrapedal (Fig. 3a, 
bottom). 

When a quadruped is standing at 
rest, the four limbs will be exposed pri- 
marily to buckling loads, but the verte- 
bral column and its musculature must 
withstand bending loads. When the 
same animal runs, the situation is sub- 
stantially reversed in those phases of 
the motion where the limbs are provid- 
ing their maximum propulsive effort. 
At these moments, the limbs are sup- 
porting bending loads, while the ver- 
tebral column is receiving an end 
thrust and thus a buckling load. The 
fact that the loads are dynamic rather 
than static is not a consideration: the 
maximum deflection of a structure sud- 
denly loaded under its own weight is 

0.1 1.0 10 

Diameter (m) 

Fig. 1 (left). Metabolic heat production plotted against body weight on logarithmic scales. The solid line has slope 3/4. The broken 
line, which does not fit the data, has slope 2/3 and represents the way surface area increases with weight for geometrically similar 
shapes [adapted from (2)]. Fig. 2 (right). Tree height plotted against trunk base diameter on logarithmic scales for record trees 
representing nearly every American species. The trunk proportions are limited by elastic buckling criteria, since no points lie to the 
left of the solid line. Data from (18, 19). 

7. 

*~~~~~~~~~~. .d 7?~?" ~~~~~~4.7 
''';:~:?~. Z. 

.7 ~ ~ ? 5 
7,~~~~ .r/. 

1202 SCIENCE, VOL. 179 



just twice the static deflection when the 
load is gradually applied (12). The 
true instantaneous loading condition for 
each of the quasi-cylindrical elements is 
thus some complicated sum of buckling, 
bending, and torsional loads, but for- 
tunately the elastic criteria predict the 
same result independently of the type 
of gravitational self-loading, namely 
that every I should be proportional to 
the 2/3 power of the equivalent d. 

Rashevsky (20) assumed that the 
trunk of an animal was a uniformly 
loaded beam, and used the linearized 

theory of beam bending to calculate 
the same result, that trunk length 
should go as diameter to the 2/ 

Rashevsky's model additionally re- 
quired the cross-sectional area of the 
animal's limbs to be proportional to 
the weight of the trunk, leading to a 
different set of rules for determining 
limb proportions from those for trunk 

proportions. In the present model all 
the proportions of an animal would 
change with size in the same way. If 
WV is the total body weight, the weight 
of any limb is a specified fraction of 
tV, and: 

W oc Id2 (4) 

but if P is proportional to d2, then 

l oc W/; d oc W' (5) 

Comparative zoologists have long 
been aware that the gross dimensions 
of many species bear a power law rela- 
tion to body weight. Brody (4) mea- 
sured the chest girth G and the height 

at withers 1 of more than 3000 Hol- 
stein cattle. His data fit the present 
model well: he empirically found G 

proportional to I"-.:'; (IV/.37' pre- 
dicted), while 11 goes as JV0." (jV'_:25 
predicted). 

In a study of primates whose weights 
ranged froii 0.28 to 22 kg, Stahl and 
Gummerson (21) reported many of the 
important somatic and skeletal dinmen- 
sions, x, as power functions of body 
weight, x =- aWl'. Figure 3a, reproduced 
from their paper, shows that chest cir- 
cumference in primates is proportional 
to H"0:17 with a correlation of .995. 
Agreement with the proposed model is 
excellent for most of his measurements: 
b is 0.28 for trunk height (0.25 pre- 
dicted) and 0.38 for maximum thigh 
girth (0.375 predicted). 

Let us return to the question of ex- 
ternal body surface area. If the surface 
area of each of the quasi-cylindrical 
elements that make up the whole ani- 
mal in the proposed model is calculated, 
we find 

surface area oc Id + d2/2 (6) 

where the second term is due to the 
ends of each cylindrical element, so 
that it is absent or halved in the case 
of many of the elements. For most 
limbs and many of the trunks under 
consideration, I/d is approximately 10, 
so that the second term is only 5 per- 
cent of the first and may be neglected. 
In this case, total body surface area is 
proportional to hI and thus to IV'IVV/, 
or WIV. Hemmingsen (8) presented a 

plot of body surface area against weight 
for animals in a weight range of 1 to 
10'; grams, and he also included points 
representing defoliated beech trees. In 
his figure, only one solid line appears, 
that appropriate to the surface area of 
a sphere of density 1.0 g/cm3. Hlis fig- 
ure is reproduced in Fig. 3b, with an 
additional line representing the pro- 
posed model of a cylinder whose sur- 
face area is three times the sphere area 
when both sphere and model weigh 
close to 8 g, but only twice the sphere 
area when both weigh about 70 kg. 
The slope of the line for this stretched 
cylinder is 0.63, while the slope of the 
line for the sphere, and thus all geo- 
metrically similar structures, is 0.67. 
Although Hemmingsen argues that the 
data points are well fitted by an imag- 
inary line running parallel to that of 
the sphere, it is apparent that a good 
fit is obtained by the present model. In 
data spanning the range from rats to 
humans, Stahl (22) found that surface 
area increases as the 0.65 power of 
body weight. Thus, the present model 
agrees with experimental observations 
of body surface area as well as body 
proportions. 

MIetabolic Rate 

Our ideas describing how size de- 
termines shape are now complete, and 
we may return to the original question 
concerning metabolism and Kleiber's 
law. Suppose a muscle, whose cross- 

- ' "Jj '"-S. Vervet monkeys 1u- --- 
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Fig. 3. (a) Chest circumference, d., plotted against body weight, IV, for five species of primates. The broken lines represent the stand- 
ard error in this least-squares fit [adapted from (21)1. The model proposed here, whereby each length, I, increases as the 2/3 power 
of diameter, d1, is illustrated for two weights differing by a factor of 16. (b) Body surface area plotted against weight for verte- 
brates. The animal data are reasonably well fitted by the stretched cylinder model [adapted from (8)]. 
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sectional area is A, shortens a length 
Al against force aA in time At. The 
power this muscle expends is AA/l/lAt, 
where oa is the tensile stress developed, 
and is in general a function of the 
shortening velocity Al/At. Hill (23) 
reported that "the inherent strength of 
a contracting voluntary muscle fiber is 

roughly constant, being of the order of 
a few kilograms per square centimeter 
of cross-section." He also presented 
arguments and experimental data to 
prove that the speed of shortening, 
Al/At, is a constant in any particular 
muscle from species to species. If we 
understand from the work of Hill and 
others that both a and Al/At may be 
taken as constant, then the power out- 
put of a particular muscle and hence 
all the metabolic variables involved in 

maintaining the flow of energy to that 
muscle depend only on its cross- 
sectional area. But this area is pro- 
portional to d2, and hence 

maximal power output oc (W3/8)2 = WO)- 
(7) 

This is precisely the statement of 
Kleiber's law we were looking for, pro- 
vided we have some confidence that 
maximal energy metabolism exceeds 
basal metabolic rate by a factor, the 
metabolic "scope," which is invariant 
with respect to scale. Hemmingsen (8) 
has presented evidence to this effect. 

According to the model proposed 
here, if lung volume goes as W (4, 21) 
but alveolar ventilation goes as WO.75, 
then respiratory frequency must scale 
as W-"-'5. The identical argument may 
be made for ventricular stroke volume, 
cardiac output, and heart rate. In fact, 
Adolph (24) reported that b for res- 

piratory frequency in mammals is 
- 0.28 [Tenney (10) independently 
gave the same number]. For heart 
rate, b has been reported as - 0.27 
(25) and -0.25 (22). Stahl (9) ob- 
served that the ratio of many physio- 
logical periods to one another is found 
to be nearly constant, independent of 
scale. Thus, the ratio of gut pulsation 
time to pulse time is nearly the same 
in all mammals, and each animal lives 

for approximately the same number of 
heartbeats or breath cycles. Other au- 
thors have discussed the importance of 
this conclusion in arriving at the 
"physiological age" of living organisms. 

Summary and Conclusions 

Arguments based on elastic stability 
and flexure, as opposed to the more 
conventional ones based on yield 
strength, require that living organisms 
adopt forms whereby lengths increase 
as the 2/3 power of diameter. The 
somatic dimensions of several species 
of animals and of a wide variety of 
trees fit this rule well. 

It is a simple matter to show that 

energy metabolism during maximal 
sustained work depends on body cross- 
sectional area, not total body surface 
area as proposed by Rubner (1) and 

many after him. This result and the 
result requiring animal proportions to 

change with size amount to a deri- 
vation of Kleiber's law, a statement 
only empirical until now, correlating 
the metabolically related variables with 

body weight raised to the 3/4 power. 
In the present model, biological fre- 

quencies are predicted to go inversely 
as body weight to the /4 power, and 
total body surface areas should corre- 
late with body weight to the 5/8 power. 
All predictions of the proposed model 
are tested by comparison with existing 
data, and the fit is considered satis- 

factory. 
In The Fire of Life, Kleiber (5) 

wrote "When the concepts concerned 
with the relation of body size and 
metabolic rate are clarified, . . . then 

compartive physiology of metabolism 
will be of great help in solving one of 
the most intricate and interesting prob- 
lems in biology, namely the regulation 
of the rate of cell metabolism." Al- 

though Hill (23) realized that "the es- 
sential point about a large animal is 
that its structure should be capable of 

bearing its own weight and this leaves 
less play for other factors," he as 
forced to use an oversimplified "geo- 

metric similarity" hypothesis in his im- 

portant work on animal locomotion 
and muscular dynamics. It is my hope 
that the model proposed here promises 
useful answers in comparisons of living 
things on both the microscopic and the 

gross scale, as part of the growing sci- 
ence of form, which asks precisely how 

organisms are diverse and yet again 
how they are alike. 
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