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Electronic Charge Densi 
in Semiconducl 

Electron density calculations give new in 

into the origins of the properties of s 
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which, it is hoped, will lead to new 
concepts. They also make possible cal- 
culations (such as bonding calcula- 
tions) which cannot be carried out 
easily by other methods. 

In the following sections I will brief- 
ly describe some of the theory, display ties electron density plots that illustrate the 
properties of covalent and ionic bonds, 

tors and discuss the relation between bond- 
ing and crystal structure for a few 
simple structures. I will also discuss 

sights the questions I posed at the beginning. 

,olids. 
Energy Bands, Pseudopotentials, 

Cohen and Charge Densities 

What holds a solid together? Where 
are the electrons in a solid? Why do 
elements and compounds exist in dis- 
tinctive structures, and why do solids 
behave as insulators, semiconductors, 
semimetals, and metals? What is the 
origin of the optical and electronic 

properties of solids? Solid state theo- 
rists have posed questions of this type 
for many years, and in some cases they 
have supplied answers. Some of these 
answers have evolved from crude, sug- 
gestive explanations to precise, quanti- 
tative solutions that are now part of 
the literature of the field (1). Theorists 
have fared much better with electronic 

properties than with structural proper- 
ties, and have concentrated on the 
former. Recently, however, there has 
been renewed interest in structural 
studies with emphasis on the bonding 
properties of semiconductors and in- 
sulators (2, 3). 

It is likely that part of the reason 

why structural problems were not pop- 
ular is that solid state theorists rarely 
work in real space. The successes in 

understanding the electronic properties 
of solids have been largely due to the 
band theory of electrons (1), from 
which we can obtain the energy states, 

E(k), of an electron in a solid as a 
function of the electron wave vector k. 
The E(k) curves can be used to give 
information about the responses of 
solids to electric and magnetic fields 
(and other probes) in the low-frequen- 
cy, optical, or high-frequency regions. 
In fact, this approach has been so 
useful that a majority of solid state 
theorists have been educated in wave 
vector (that is, momentum or "re- 

ciprocal") space. Because of this, they 
often give up the luxury of having a 

pictorial representation of the electron 
states of interests. Recently, however, 
energy band calculations have become 
so refined that wave functions for the 
electrons which are obtained in these 
calculations are accurate enough to 
give reliable probability densities for 
the electrons in solids (4). The main 
reasons for the refinements are the 
inmprovements in large computers and 
the use of experimental data by theo- 
rists to improve their calculations (5). 
The latter reason is the more important 
as it is possible to use optical data 
to fix atomic potentials very accurately. 
These potentials are then used to com- 

pute E(k) and electronic wave func- 
tions. 

The resulting electronic charge den- 
sities in solids-as in the case of mole- 
cules (6)-provide real-space models 

To obtain charge densities and wave 
functions, the energy band structure, 
E(k), must be calculated. This can be 
done by several methods, and the one 
we have used is the pseudopotential 
method (5). Pseudopotential theory is 
based on the division of electronic 
states into core states, which have the 
characteristics of atomic energy states, 
and valence states, in which the elec- 
trons are itinerant. For example, in 
the case of sodium, the electrons in 
the Is, 2s, and 2p states would be core 
electrons, which are assumed to be 
nondeformable and to be identical 
whether the sodium atoms form a gas 
or a solid. However, the 3s valence 
electrons in the solid are free to wander 
through the crystal practically unhin- 
dered, giving sodium its high conduc- 

tivity and metallic character. For sili- 
con the core is the same as for sodium, 
but the two 3s and two 3p valence elec- 
trons are concentrated to some extent 
in the bonds between the silicon atoms. 

This model of a solid illustrates a 
basic problem in band structure calcu- 
lations. Near the cores the potentials 
are strong and rapidly varying. The 
electronic energy states are like those 
in an atom. Between the cores the 
potential is relatively weak and slowly 
varying, and the wave functions re- 
semble those for free electrons or 
plane waves. Consequently, one does 
not have a good basis set to expand 
the wave functions. Atomic states are 
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only good for core electrons, which 
are not of primary interest since the 
solid state effects are associated with 
the valence electrons. On the other 
hand, plane waves appear at first to be 
too unconfined to represent true va- 
lence states in a solid, particularly near 
the core. 

There have been several successful 
methods for dealing with this problem. 
Pseudopotential theory is an outgrowth 
of one of them, the orthogonalized 
plane wave or OPW method (7). The 
central idea of the OPW method is to 
take a basis wave function in the form 
of a plane wave which is constructed 
in such a way that it is orthogonal 
to the core states. Because the OPW 
wave function is orthogonal to all the 
low-energy core states, it behaves near 
the core as if it were the next highest 
atomic state. Outside the core, it looks 
like a plane wave. This is precisely 
what we want. This is where the 
pseudopotential comes in. It is straight- 
forward to convert into a potential the 
part of the OPW wave function that 
causes the orthogonalization to the 
core (5). The potential is repulsive 
since the orthogonalization terms have 
the effect of helping to keep the elec- 
trons out of the core. This repulsive 
potential cancels a large part of the 
strong, attractive core potential, leav- 
ing a net weak pseudopotential. 

This is the essence of pseudopoten- 
tial theory. It is possible to justify the 
existence of a weak potential that can 
be used to obtain the energy levels of 
the valence states in the solid. The 
wave functions obtained with the pseu- 
dopotential are equivalent to the real 
wave functions outside the core, but 
near the core they do not have the 
strong oscillations that the true wave 
functions have. However, the strength 
of the method lies in the fact that the 

energy eigenvalues are not pseudo- 
energies, but are identical to the eigen- 
values obtained by using the true wave 
functions. Thus, the wave functions 
calculated from the pseudopotential 
represent the electrons very well, ex- 

cept near the cores. 
The next question is how to get the 

pseudopotential for a crystal. The crys- 
tal pseudopotential can be constructed 
from the pseudopotentials for the 
atoms plus a structure factor that 
places the potentials in their appro- 
priate positions in the crystal. The struc- 
ture factor can be obtained from an 
x-ray analysis of the crystal. It is also 
convenient to deal with the Fourier 
transform of the pseudopotential, that 
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Fig. '. The diamond crystal structure (/8). 

is, the pseudopotential in reciprocal 
space. Because of the periodic sym- 
metry of the solid, it is only necessary 
to know the atomic pseudopotential 
at specific wave vectors, which are 
the reciprocal lattice vectors, G. Since 
the pseudopotential is weak and we 
are not interested in its magnitude near 
the core, the Fourier series can be cut 
off at relatively small wave vectors. 
For example, only the first three coef- 
ficients or form factors, V(G), are 
necessary to obtain the energy levels 
for crystals like gern:anium or silicon in 
the diamond structure, so that the 
problem reduces to finding the I/(G)'s 
for the atoms. The V(G)'s can either 
be calculated from atomic wave func- 
tions or obtained from experiment (5). 
The latter method is more accurate and 
is sometimes called the empirical pseu- 
dopotential method (EPM) (5, 8). I 
will briefly describe the EPM with 
emphasis on its use for semiconductors 
and insulators, although it can also be 
used for metals. In the example the 
V(G)'s are obtained from optical data. 

A/ 

B, 

B,- 

Fig. 2. Three primitive cells [smallest unit 
ce!l for the face-centered cubic structure 
(1)] showing the positions of the atoms 
(A and B). The intersection of the (110) 
plane with the center cell is shown by the 
dashed lines. The (110) plane bounded 
by its intersection with the primitive cell 
will be used to display the charge density. 

The V(G)'s, obtained either from 
atomic wave functions or by fitting 
optical data for atoms, are considered 
to be approximate. These approximate 
form factors are then used in Schri- 
dinger's equation, which is solved for 
the band structure, E(k). Once the 
band structure is obtained it can be 
used to compute the frequency-depend- 
ent optical reflectivity, R(w,). The R(o,) 
curve usually has structure correspond- 
ing to the electronic energy gaps in 
E(k). The calculated R(o,) can now 
be compared with a measured R((,,). 
It generally happens that the prominent 
optical structure is similar in both 
curves, but the theoretical curve is 
shifted from the experimental one, that 
is, the energy gaps in E(k) are not 
quite correct. From an analysis of 
E(k) and R((,) it is possible to find 
the gaps that are responsible for the 
structure and their dependence on the 
V(G)'s. The V(G)'s are then changed 
until agreement is reached, at which 
point one has the correct pseudopoten- 
tial, and an analysis of the optical data 
as a by-product. Often other experi- 
mental data besides the optical data are 
used, but optical data are the most 
con veni ent. 

Once the V(G)'s have been deter- 
mined and E(k) obtained, the wave 
functions can be determined and used 
to compute the electronic charge den- 
sity. The details and results of the 
latter calculation are described below. 

Let me begin with the elemental 
semiconductors in group IV of the 
periodic table, which have the diamond 
structure (Fig. 1). The primitive cell 
for Ge contains two atoms, and each 
Ge atom has four valence electrons, 
so that there are eight valence elec- 
trons in a cell. If we examine E(k) 
for Ge, the energy levels will be di- 
vided into bands. Each band represents 
the states for two electrons (spin up 
and spin do\An) in a cell. The dia- 
mond structure contains two atoms per 
unit cell, and there is an energy gap 
between the fourth and fifth bands. 
The eight valence electrons occupy the 
four bands below the gap, and these 
bands are therefore called valence 
bands. It is the energy gap that gives 
rise to the extremely useful properties 
of semiconductors (for example, in the 
transistor). 

If we remain in the Ge row of the 
periodic table, we can construct com- 
pounds with eight valence electrons 
that are similar to Ge. Gallium arse- 
nide is such a compound. It has a 
crystal structure similar to the diamond 
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structure of Ge (Fig. 1), if the two 
Ge atoms in the unit cell are replaced 
by one Ga and one As atom. The latter 
structure is the zinc blende structure. 
Again there are eight valence electrons, 
three from Ga and five from As. There 
are many III-V semiconductors of this 
type, composed of elements from 
groups III and V in the same row of 
the periodic table. Another such com- 
pound in the Ge row is zinc selenide. 
This II-VI material also has eight va- 
lence electrons (two from Zn and six 
from Se) and exists in the zinc blende 
structure. 

Let us return to the electronic charge 
density. Not only is it possible to cal- 
culate the charge density for the sum 
of the eight valence electrons-that 
is, the four valence bands-but the 
charge density p, can be calculated 
for each individual band (labeled by 
the index n). The solution of Schro- 
dinger's equation with the pseudopoten- 
tial gives E,l(k) and ,n,k;(r) for each 
band, where ',,,k(r) is the wave func- 
tion for a k state in band n. To obtain 
the charge density for band n we need 
to solve 

p,,(r) = e E I n.,k(r) 1 
k 

(1) 

where the summation is over all avail- 
able k states in band n, and e is the 
electronic charge. 

Electron Charge Density Results 

Since p(r) is a three-dimensional func- 
tion, it is convenient to choose a plane 
to illustrate the results. A suitable 
plane that contains the two atoms in 
the primitive cell (1) is a (110) plane, 
shown in Fig. 2. Values of constant 
p(r) in this plane form contour plots 
(or relief maps). The units for p(r) 
are e/Q, where Q is the volume of the 
primitive cell (Q =- a:", where a is 
the lattice constant). 

In Fig. 3 the calculated charge den- 
sity for the sum of the four valence 
bands for Ge is given; this is the total 
charge density for all the valence elec- 
trons in Ge. The covalent nature of 
the Ge bond is demonstrated as the 
charge is piled up halfway between 
the two Ge atoms. The contours rep- 
resenting the bonding charge are well 
localized and egg-shaped, with a radius 
of about one-fourth the Ge-Ge dis- 
tance (which is 2.45 angstroms). The 
contours for the core electrons are not 
shown here. They would give a very 
high concentration of electrons near the 
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Ge sites. The radius of each Ge core is 
about one-fifth the Ge-Ge distance. 
The core radii were estimated by calcu- 
lating the radius of a sphere containing 
80 percent of the outermost shell of the 
Ge core electrons (by using atomic 
wave functions). 

To demonstrate the nearly free-elec- 

tron character of the conduction band 
states, the hypothetical charge density 
for the fifth Ge band is plotted in Fig. 
4 as if it were filled. A constant charge 
density would result if the electrons 
were completely free. The small num- 
ber of contours in Fig. 4 shows that 
the charge density distribution is nearly 

[I/ 1.5- 51.5 / / l_ 

Fig. 3 (top). Total valence electron charge density (in units of electronic charge, e, 
per primitive cell) for Ge in the (110) plane. The radius of the Ge cores (not shown) 
is 0.20 of the Ge-Ge distance. This is the radius of a sphere containing 80 percent of 
the outermost shell of core electrons. Fig. 4 (bottom). Hypothetical charge density for the first conduction band of Ge. 

Fig. 5 (top). Valence electron charge density for band 1 of GaAs. The core radii for 
Ga and As are 0.23 and 0.18 of the Ga-As distance. The radii are those of spheres 
containing 80 percent of the outermost shell of core electrons. Fig. 6 (bottom). Valence electron charge density for band 2 of GaAs. 
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constant, with a slight concentration 
of charge at the atomic sites; there is 
no concentration of charge in the bond- 
ing region. Hence, the states in the 
first conduction hand resemble those 
for free electrons, with some slight 
antibonding character. The valence 
electrons thus supply the bonding 

charge and form the covalent bond, 
while electrons that are excited to the 
conduction band are nearly free and 
capable of carrying electrical and heat 
currents through the crystal. 

For GaAs, the valence electrons 
form a bond that is partially covalent 
and partially ionic. It is interesting to 

Fig. 7 (top). Valence electron charge density for band 3 of GaAs. Fig. 8 (bottom). 
Valence electron charge density for band 4 of GaAs. 

Fig. 9. 'otal valence electron charge density of (aAs: sum of valence bands I to 4. 

explore the contribution to the bonding 
from the electrons in each band. The 
effects are more easily understood if 
one considers building an imaginary 
crystal by using the eight valence elec- 
trons and the Ga: 4- and As"-4- ions or 
cores. Starting with the cores in their 
lattice positions, we can now add the 
valence electrons two at a time, by fill- 
ing the valence bands one at a time. 
The results are shown in Figs. 5 to 9. 
In Fig. 5 the As5 t core attracts the 
first two valence electrons, leaving the 
less attractive Ga:' ' ion almost bare. 
The distribution is like that in an 
atomic s shell around the As core, and 
the electrons cause the As ion to ap- 
pear to be approximately anl As:- - core. 
In band 2 (Fig. 6), the electrons dis- 
tribute themselves in a more covalent 
arrangement with a mixture of s and p 
character, since the cores are now ap- 
proximately equally attractive. For 
bands 3 and 4 (Figs. 7 and 8) the 
covalent charge is clearly displayed. 
but there is some shift toward the As 
ion. These states are p-like, and the 
charge is mostly concentrated between 
the cores. In the total charge density 
(Fig. 9), the charge densities of the 
individual bands add up to form a bond 
that is partially covalent and partially 
ionic. The covalent bonding charge is 

displaced toward the As atom. 
In ZnSe the Zn and Se ions have 

charges of + 2 and +-6, respectively. 
Hence, the trend toward ionic bonding 
that is shown above on passing from 
Ge to GaAs is even stronger in ZnSe. 
Much of the charge becomes concen- 
trated around the Se ion, but some 
covalent charge does remain in the 
bond. This is shown for the total 

charge density in Fig. 10. The covalent 

bonding charge is close to the Se ion, 
and it is shown by the rise in charge 
density above the large background in 
this region. 

The materials Ge, GaAs, and ZnSc 
form an interesting series for studying 
bonding. The lattice constants and the 
wave functions for the core electrons 
are approximately the same for the 
three, and it is the valence electrons 
that give rise to the bonding properties. 
The series gray tin, indium antimonide, 
and cadmium telluride is similar in this 
sense, and calculations (4) for this 

group of seimiconductors give results 
similar to those for the materials in 
the Ge row. 

The tendency toward a more ionic 
bond in going from Ge to GaAs to 
ZnSe is clearly displayed in the charge 
density plots. Ionic bonding is charac- 
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Fig. 10. Total valence electron charge density of ZnSe: sum of valence bands 1 to 4. 
The core radii for Zn and Se are 0.24 and 0.15 of the Zn-Se distance. The radii are 
those of spheres containing 80 percent of the outermost shell of core electrons. 
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terized by a piling up of charge around 
the anion and a reduction of covalent 
bonding charge between the ions. It is 
the covalent bonding charge that is be- 
lieved to be responsible for the stabili- 
zation of the tetrahedral structure for 
these compounds. Once the charge 
transfer is complete and the system 
can be thought of as a collection of 
charged ions (similar to NaCl), the 
fourfold coordinated structure is not 
stable with respect to the sixfold co- 
ordinated rock salt or NaCl structure. 

To explore the role of the covalent 
bond it is useful to obtain a measure 
of the magnitude of the electronic 
charge in the bond. This is not easy, 
since the charge density background is 
varying and the bonding charge, Zb, 
is not clearly defined. With the above 
statement serving as a caveat, we can 
calculate Zb by integrating the charge 
density over a suitable region 

Zb =f [nP(r)-po]ldr (2) 

where po is the charge density at the 
outermost closed contour of the bond- 
ing charge density for each valence 
band. The integration is then done 
numerically over the volume described 
by the outermost contour. The values 
for Zi, (in units of e) are 0.146 for 
Ge, 0.080 for GaAs, and 0.026 for 
ZnSe. A similar calculation for the 
gray Sn row yields 0.123 for Sn, 0.091 
for InSb, and 0.027 for CdTe. These 
values should be considered to be ap- 
proximate for the reasons discussed 
above. 

Since the bonding charge, Z,, is ex- 
pected to be related to the covalency 
of these crystals, we have compared 
this quantity with estimates of the 
ionicity or covalency by using the 
ionicity scales of Phillips and Van 
Vechten (2, 3) and of Pauling (9). 
Following the notation of Phillips (2) 
the ionicity fi can vary between 0 and 
1. The value fi = 0 corresponds to a 
completely covalent crystal (such as 
C, Si, Ge, or gray Sn) while the value 
fi = 1 implies a completely ionic crystal 
with no covalent bonding. The Phillips- 
Van Vechten scale is based on esti- 
mates of the average energy gaps in 
semiconductors and insulators with 
eight valence electrons (the systems 
we are considering). The Pauling scale 
is used over a larger domain; we use 
here the values of ionicity for the 
Pauling scale that were given by Phil- 
lips (2). 

It is interesting to note that an anal- 
ysis of 68 binary crystals with eight 
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Fig. 11. Bonding charge versus ionicity. 
The bonding charge is in units of e per 
bond (see text). 

valence electrons reveals that a critical 
ionicity value f = 0.785+ 0.01 (Phil- 
lips-Van Vechten scale) separates the 
more covalent fourfold coordinated 
crystals (diamond, zinc blende, and 
wurtzite structures) from the more 
ionic sixfold coordinated crystals (rock 
salt structure). Although the determi- 
nation of f, is empirical, it is not too 
difficult to qualitatively understand the 
origin of the dependence of structure 
on fi. It is expected that for fi = 0 the 
covalent bonding charge stabilizes the 
tetrahedral structure, or in terms of 
orbitals, sp3 hybridization results in the 
tetrahedrally directed covalent bonds. 
When fi becomes large, Zb becomes 
small and tetrahedral coordination is 
lost. In fact, the bonding becomes elec- 
trostatic and sixfold coordination is 
preferred. One expects qualitatively 
that a transition from one structure to 
another should take place when Zb is 
close to zero. (The real issue is the 
relative free energy for the structures, 
but this has not been calculated as yet.) 

In Fig. 11, we plot our calculated 
Zb against fi for the Phillips-Van 
Vechten and Pauling fi scales. Starting 
with the Phillips-Van Vechten scale, if 
the points for the series Ge, GaAs, and 
ZnSe are connected by a smooth curve 
and extrapolated to zero, the curve 
intersects the axis at i = 0.78. A simi- 
lar curve for Sn, InSb, and CdTe ex- 
trapolates to fi = 0.79. These are the 
values obtained as Zb approaches zero. 
If we compare these with the empirical 
value for the structural change, fi= 
f/ = 0.785 + 0.01, we find excellent 
agreement in these values. Considering 
the accuracy in the calculation and the 
fact that a structural change probably 
occurs before Zb actually becomes zero, 
the excellent agreement between these 
values is somewhat fortuitous. 

If the Pauling scale is used, the 
ionicity values for Zb==0 are 0.80 for 
the Ge row and 0.61 for the Sn row. 
The critical ionicity [as determined by 
Phillips (2)] on the Pauling scale is 
0.80. The value obtained for the Sn 
row is low, which seems to imply that 
for the crystals studied here the agree- 
ment with the Phillips-Van Vechten 
scale is somewhat better. 

The relation of Zb to fi and the cal- 
culated ionicity value for the transition 
from fourfold to sixfold coordination 
are examples of the type of informa- 
tion one can obtain from charge den- 
sity plots. Another interesting approach 
to studying the relation between elec- 
tronic charge density and crystal struc- 
ture is to compare the electron density 
computed for a compound crystallizing 
in one crystal structure with the elec- 
tron density computed for the same 
compound in another structure (10, 
11). The object is to try to find differ- 
ences in the electronic configuration 
that can be attributed to structural dif- 
ferences and to find some links be- 
tween the electronic configuration and 
structure. The compound zinc sulfide 
is an ideal candidate for such a study 
since it exists in the zinc blende (cubic) 
and wurtzite (hexagonal) crystal struc- 
tures. Both of these structures are four- 
fold coordinated, and the first and 
second nearest neighbors are located 
in the same positions in the two 
structures. 

The structural differences do affect 
the electronic configuration. In the zinc 
blende case, the four nearest neighbors 
see the same environment. However, 
in wurtzite this is not the case, and 
because of this there is an asymmetrical 
distribution of charge about the sulfur 
atoms. This is best seen by examining 
p(r) plots for cubic ZnS in the (110) 
plane (Fig. 12) and hexagonal ZnS 
in the (110) plane (Fig. 13). The units 
are in electron charge per primitive cell 
(two ions for zinc blende and four 
ions for wurtzite); the wurtzite struc- 
ture was assumed to have an ideal ratio 
of the unit cell parameter c/a. 

The electron density for cubic ZnS 
(Fig. 13) is very similar to that for 
ZnSe (Fig. 10), as expected, but in the 
hexagonal case the vertical bond shows 
a maximum p of about 76 whereas 
the diagonal bond has a maximum p 
of about 75. In addition to the asym- 
metry in the magnitude of the charge 
density between the diagonal and verti- 
cal bonds, the charge density in ZnS 
exhibits a "bulge"; that is, the maxi- 
mum charge density is not along the 
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Fig. 12. Total valence electron charge density for cubic ZnS (zinc blende structure): 
sum of valence bands 1 to 4 in the (li0) plane. 

axis between the Zn and S ions. This 
bulge arises from the asymmetry in the 
assumed structure and could be pre- 
dicted on the basis of classical electro- 
statics. The displacement in the charge 
suggests the possibility of electronic 
polarization in this wurtzite crystal 
with an ideal c/a ratio. Since the net 

polarization and the ideal c/a ratio are 
never found in real wurtzite crystals, it 
is tempting to speculate that the origin 
of the observed nonideal c/a ratios is 
the shifting of the atoms from the ideal 

positions to reduce the polarization of 
the ideal case. If this is the explanation 
of nonideal c/a ratios, it may be pos- 
sible to calculate the observed c/a 
ratios by computing the c/a ratio nec- 

essary to obtain a theoretical zero 

polarization. 

Summary, Recent Work, and 

Implications 

In this section, I will discuss some 
of the questions posed at the beginning 
of this article, give some answers, and 
describe briefly recent results and work 
in progress that bear on the questions. 
Complete and detailed answers are not 

yet available for all these questions, 
but in some cases a great deal can be 
said to elucidate the physics. 

The distribution of electrons in a 
solid can be described, at least to first 

order, by using the charge density plots. 
I expect that improved calculations 
with better pseudopotentials and wave 
functions will supersede the calcula- 
tions displayed here, but I hope only 
in detail. Our calculations for solids, 
where we are dealing with 1023 parti- 
cles per cubic centimeter, are at a more 

primitive stage than calculations for 
atoms or molecules (6), where refine- 
ments are expected only on a very fine 
scale. Better experimental techniques 
should yield more accurate numbers 
for the pseudopotential form factors. 
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In fact, reflectivity measurements with 
wavelength modulation have been used 
to obtain a more refined lnSb band 
structure (12). The charge density ob- 
tained in this calculation is very similar 
to that given here, and the bonding 
charge is only slightly smaller, making 
Fig. 11 a bit more linear. Changes of 
this order are expected to occur. 

Another aspect of the charge dis- 
tribution question which should be 
discussed is the domain of the calcula- 
tions. I have described work on dia- 
mond, zinc blende, and wurtzite crys- 
tals. Calculations have also been made 
for PbTe (13) and NaCl (14) in the 
rock salt structure and for other zinc 
blende materials. Metals have also been 
studied, for example, aluminum (15), 
noble metals, and transition metal car- 
bides such as NbC. Charge density 
plots for metals are much more con- 
stant than for semiconductors. For ex- 

ample p(r) for Ge varies from about 
1 to 27, with an average value of 8, 
while for Al it is between 1.7 and 3.4, 
with an average value of 3. 

Fig. 13. Total valence electron charge 
density for hexagonal ZnS (wurtzite struc- 
ture): sum of valence bands 1 to 8 in 
the (110) plane. Contour lines are shown 
with Ap = 3.7 up to p = 62.9. Contour 
lines for p > 62.9 are chosen without a 
fixed Ap to illustrate the asymmetries in 
p(r). 

One can also ask about the con- 
sistency between theoretical electron 
distributions and experimental results. 
The first experiments that come to 
mind are those involving x-ray tech- 
niques. This problem is a difficult one. 
If a solid is described as a superposi- 
tion of atoms, and atomic wave func- 
tions are used to explain the observed 
x-ray results, only small deviations are 
found. These small deviations test the 
correctness of the calculations. In cases 
where the x-ray data were considered 
to be accurate, comparisons reveal 
fairly good agreement between theory 
and experiment [for example, see the 
detailed study made for Al (15)]. New 

experimental techniques, such as x-ray 
Compton scattering, may provide more 
definitive tests for semiconductors. 
Comparisons of p(r) obtained by the 
pseudopotential method with values 
obtained by other theoretical methods 
for computing wave functions, like the 
OPW method, yield reasonably con- 
sistent results. 

The questions about optical and 
electronic properties have been an- 
swered to a large extent in terms of 

energy band structures and this area 
is a very mature one. I would expect 
that charge density calculations will not 
contribute in a direct way here, but 

they may be important conceptually. 
For example, the prominent features 
of the optical spectrum of Ge are un- 
derstood in terms of electronic transi- 
tions between filled and empty states 
or bands. Once E,n(k) is known, anal- 

ysis of the reflectivity is made by as- 

sociating peaks in the reflectivity with 
transitions between bands n and n' at 
a particular point in k-space in the 
Brillouin zone (1). This type of analy- 
sis is very powerful and usually com- 

pletely satisfies a solid state theorist. 

However, it does not give a physical 
picture of where the electron is or 
where it is going in real space. If we 
choose the reflectivity of Ge as an ex- 

ample, electron density plots show that 
the first direct optical transition, at 1 

electron volt, involves an initial state in 
which the electron is concentrated in 
the bond (between the atoms) and a 
final state in which the electron is on 
the atoms. The next peak in energy, 
at 2.2 electron volts (A peak), is simi- 
lar except that the final state is a bit 

more spread out. The main peak in the 
Ge spectrum (the S-A peak at 4.3 elec- 
tron volts) involves initial states concen- 
trated in the bond and final states spread 
out in the cell and almost constant in 

density. These pictures of the states in 
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real space may yield new insights into 
the physics of optical properties. It may 
be possible to use this approach to study 
the dependence of optical spectra on 
structure-or lack thereof, as in the case 
of amorphous semiconductors. 

Theorists dealing with k-space can 
make good use of charge density plots 
and wave functions in real space for 
other calculations. Since wave functions 
associated with a specific point in k- 
space can be constructed, electronic 
properties (such as the pressure de- 
pendences of energy states) can be 
visualized in a manner similar to that 
used for optical spectra. Better meth- 
ods of calculation may result because 
of this approach. For example, cur- 
rently there has been interest in using 
Wannier wave functions as a basis set 
for electronic states in solids. These 
wave functions are localized real-space 
functions. It is fruitful as a test of the 
applicability of this scheme to construct 
the Wannier states, plot them in real 
space, and compare them with wave 
functions obtained from band calcu- 
lations. 

A recent advance will make studies 
of the type described above, involving 
charge density calculations, much 
easier and less expensive. In construct- 
ing the p(r) function we used many 
points in k-space to compute Uk(r) for 
Eq. 1. It can be shown (16) that ac- 
curate p(r) calculations (that is, of the 
order of 1 percent accuracy) can be 
made by using just a few k-space 
points. These points must be chosen in 
a prescribed manner, and the charge 
density associated with the points must 
be averaged in a specific way. This 
scheme reduces the labor and computer 
time involved in charge density cal- 
culations. 

Coming back to the questions about 
the origin of the observed structures 
of solids and the bonding in solids, we 
have made some inroads by using elec- 
tron distribution studies. Examples are 
the calculations involving the transition 

from fourfold to sixfold coordination, 
the pictures of covalent and ionic dis- 
tributions of electrons, and the changes 
in electron density in going from the 
zinc blende to the wurtzite structure. 
These results are in some cases only 
qualitative; but the questions are diffi- 
cult ones, since the energy differences 
between two possible structures are 
quite small on the scale of the energies 
computed in band calculations. Some 
recent work on structure and bonding 
involves an analysis of NaCI in the 
rock salt and hypothetical zinc blende 
structures (14), and calculations for 
materials in group IV (17). These 
studies give some insight into the ques- 
tion of why NaCI exists in the rock 
salt structure while GaAs prefers the 
zinc blende structure. Attempts have 
been made to explain the origin of 
covalent bonding and the strength of 
the covalent bond in going from car- 
bon (diamond) to gray tin (17). 

The case of diamond is particularly 
interesting. Because it has a simple 
(ls)2 core, with no p state in the core, 
diamond is a difficult case for pseudo- 
potential studies, where the orthog- 
onality between valence and core 
states provides a repulsion of the 
valence states from the core. The 2p 
valence electrons must then be treated 
carefully, and it is these electrons that 
are prominent in determining the 
covalent bond. Preliminary studies 
have revealed some interesting effects 
(11). The bonding charge is found to 
be more spread out in diamond and, 
unlike Si and Ge, the minimum in the 
potential seems to be displaced from the 
halfway point between the atoms, so 
that there are two dips in the potential 
and possibly two humps in the charge 
density. (The preliminary calculations 
show the humps to be small, and the 
main feature is the spreading out of the 
charge.) If the carbon potentials are 
artificially forced closer together, so 
that the minima coincide, the inter- 
atomic distance becomes close to that 

of graphite. It is tempting to speculate 
that this peculiar nature of the carbon 
potential, compared with the Si and 
Ge potentials, is the reason why carbon 
forms multiple bonds and exists in 
many organic materials. My statements 
on carbon are speculative, but they 
illustrate the type of statements that 
may be useful in studies of crystal 
structure through charge density plots. 
I expect that much more work will be 
done in this area, and structural 
theories based on electronic charge 
density studies will result. 

A by-product of the charge density 
calculations is the use of charge density 
plots as an educational tool. It is help- 
ful to "see" the covalent bond and the 
changes that occur on passing from 
covalent to ionic bonding. I hope that 
these pictures will provide a useful con- 
ceptual background for future research 
on chemical binding and on the elec- 
tronic structure of solids. 
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