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Newton and the Fudge Fact4 

Richard S. West 

The Mathematical Way 

"In the preceding Books," Newton 
wrote as he introduced Book III of the 
Principia (1, p. 397), "I have laid 
down the principles of philosophy; 
principles not philosophical but mathe- 
matical. ... It remains that, from the 
same principles, I now demonstrate the 
frame of the System of the World. 
Upon this subject I had, indeed, com- 
posed the third Book in a popular 
method, that it might be read by many; 
but afterwards, considering that such 
as had not sufficiently entered into the 
principles could not easily discern the 
strength of the consequences. . . . I 
chose to reduce the substance of this 
Book into the form of Propositions (in 
the mathematical way), which should 
be read by those only who had first 
made themselves masters of the prin- 
ciples established in the preceding 
Books." The very title he had chosen 
for his work, Philosophiae naturalis 
principia mathematica, had underlined 
the same theme, in evident contrast to 
Descartes' mere, unmodified Principia 
philosophiae. In the happy phrase of 
Alexandre Koyre, the dean of historians 
of the scientific revolution, the universe 
of precision had replaced the world 
of more or less. Newton's mathematical 
way turned out to be the road that 
modern science has followed with 
steadily waxing success ever since. 
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into oblivion and crystallized the en- 
during pattern of modern science. 

The role of the Principia in estab- 
lishing the quantitative paradigm of 
physical science extended well beyond 
its dynamic explication of accepted 
conclusions. Far more impressive was 

or its success in raising quantitative science 
to a wholly new level of precision. The 
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claim. If the Principia established the 
quantitative pattern of modern science, 
it equally suggested a less sublime 
truth-that no one can manipulate the 
fudge factor quite so effectively as 
the master mathematician himself. 

Acceleration of Gravity 

Consider three specific examples 
that rank among the Principia's more 
impressive achievements. The law of 
universal gravitation rested squarely on 
the correlation of the measured ac- 
celeration of gravity at the surface of 
the earth with the centripetal accelera- 
tion of the moon. Starting from the 
principle of inertia, Newton had shown 
that a system of planets orbiting the 
sun in accordance with Kepler's three 
laws entails a centripetal attraction 
toward the sun that varies inversely 
with the square of the distance from 
the sun. Equally, a system of satellites 
orbiting Jupiter in accordance with 
Kepler's laws entails an inverse square 
force toward Jupiter. Before he could 
invoke the uniformity of nature as 
stated in his second "Rule of Reason- 
ing in Philosophy" and apply the 
ancient word gravitas to this force, 
however, he had to show that the 
attraction holding the moon in its 
orbit is quantitatively identical to the 
cause of heaviness at the surface of 
the earth. Presented initially in Prop- 
osition IV, Book III, the correlation 
of the acceleration of gravity, g, with 
the moon's centripetal acceleration was 
further refined in Proposition XXXVII. 
Measurements with pendulums had set 
Ig, the distance a body falls from rest 
in 1 second near the surface of the 
earth in the latitude of Paris, at 15 
Parisian feet (= 15 X 1.068 English 
feet), 1 inch, 17 lines (1 line = 

9 12 

inch). Starting with the measured orbit 
of the moon, Newton calculated the 
distance that the attraction of gravity 
causes it to deviate from a rectilinear 
inertial path during 1 minute. This fig- 
ure required correction by the amount 
of the sun's disturbance of the moon's 
orbit, measured by the motion of the 
moon's line of apsides, yielding a cal- 
culated distance of 14.8538067 feet. A 
body removed one-sixtieth as far from 
the earth would fall the same distance 
in 1 second. Since he had set the dis- 
tance of the moon at 60- times the 
maximum radius of the earth, Newton 
corrected the calculated fall in 1 second 
accordingly. He took the oblate shape 
of the earth into account, computing 
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the distance of fall at the mean radius 
(45? latitude), and adding two-thirds 
parts of a line to correct to the smaller 
radius at the latitude of Paris. Hence, 
at Paris, bodies would fall 15 Parisian 
feet, 1 inch, 4 5 lines in 1 second. The 
rotation of the earth gives rise to 
centrifugal effects which diminish the 
fall by 3.267 lines at Paris. Hence, by 
calculation from the centripetal accel- 
eration of the moon, ig should equal 
15 feet, 1 inch, 1L- lines (3). Beneath 
its unsettling combination of decimals 
carried to seven places and fractions of 
varying complexity, the calculation pur- 
ports to find a correlation accurate to 
a fraction of a line, a degree of preci- 
sion perhaps somewhat better than 1 
part in 3000. 

Velocity of Sound 

Newton's calculation of the velocity 
of sound falls into a different category 
from the correlation of g with the 
moon's centripetal acceleration. In the 
latter case, he demonstrated the corre- 
lation between two independently mea- 
sured values. In the former, he started 
from principles of dynamics and ar- 
rived at the measured velocity of sound. 
Because he advocated the corpuscular 
conception of light, we tend to forget 
that Newton carried out the first suc- 
cessful analysis of what we now call 
simple harmonic motion. In extending 
that analysis successfully to embrace 
the propagation of sound, a demonstra- 
tion wholly without precedent which 
inaugurated a new branch of theoretical 
physics, he achieved another triumph 
of quantitative science. 

The demonstration rested, of course, 
on his understanding of the dynamics 
of the simple pendulum-that the com- 
ponent of gravity parallel to the tangent 
at any point on a cycloid is propor- 
tional to the displacement of that point, 
measured along the arc, from the posi- 
tion of equilibrium. This is the dynamic 
condition of simple harmonic motion. 
By extending the analysis to waves on 
a surface of water, Newton calculated 
the period of a single wave, which 
yielded the time for a wave to advance 
one wavelength, and hence the velocity 
of propagation. Boyle's Law allowed 
him to translate the results to compres- 
sive waves propagated through air. He 
demonstrated that the velocity of pulses 
varies as the square root of the elastic 
force divided by the density and, com- 
paring the density of water to that of 
air, arrived at a preliminary velocity of 

sound of 979 (English) feet per sec- 
ond. The figure required two correc- 
tions. In the calculation he had assumed 
a medium of pointlike particles, but 
since the solid particles, through which 
the pulses pass instantaneously, are of 
finite dimension in comparison with the 
spaces between them (a property which 
he called the "crassitude" of the parti- 
cles), the velocity must be increased 
accordingly. From the measured com- 
parative densities of air and water 
(1: 870), Newton calculated that the 
dimensions of the particles of air oc- 
cupy between one-ninth and one-tenth 
of linear distances in air (that is, 93 < 
870 < 103). Hence, the diameter of a 
particle is to the interval between parti- 
cles as one to eight or nine (which he 
then took simply as nine), and to the 
979 feet per second we must add 
979/9, or 109, feet per second. A fur- 
ther correction must be made for vapor, 
which does not vibrate with the air and 
thus causes an increase in the velocity 
proportional to the square root of the 
amount of air that the vapor displaces. 
That is, if the atmosphere consists of 
ten parts of air to one part of vapor, 
the velocity will be increased by the 
factor (11/10) 2, which is nearly equal 
to 21/20. Sound moves more swiftly 
by this ratio through air containing 
vapor, that is, through the atmosphere 
as it is, than it would through "true 
air." The two corrections brought the 
calculated velocity of sound to 1142 
feet per second (1, pp. 382-383). The 
most recent elaborate measurement of 
the velocity of sound, by William Der- 
ham, confirming the result which 
Derham reported that Halley and 
Flamsteed had obtained in other mea- 
surements at the Royal Observatory, 
was 1142 feet per second (4, 5). Al- 
though he dispensed with fractions and 
decimals in this calculation, Newton 
effectively claimed a precision of about 
1 part in 1000. 

Precession of the Equinoxes 

With the precession of the equinoxes, 
Newton undertook to calculate the ex- 
act quantity of what he treated as a 
perturbation of the ideal uniform rota- 
tion of the earth about an axis fixed in 
direction. In Proposition LXVI, Book I, 
he developed a general analysis of the 
three body problem, which he then 
applied to several phenomena by ad- 
justing the parameters. Primarily, it 
formed the basis of his lunar theory; 
but by shrinking the orbit of the satel- 

SCIENCE, VOL. 179 



lite to coincide with the circumference 
of the planet it circled, and by replacing 
the satellite in its orbit with a ring of 
liquid or solid matter, he used the same 
analysis to derive the tides and the pre- 
cession of the equinoxes. The mean 
motion of the lunar nodes, the result of 
the sun's action to change the plane of 
the moon's orbit, is 20?11'46" per year. 
The mean motion of the nodes of a 
moon at the equator of the earth revolv- 
ing with the period of the earth's rota- 
tion would be less in the proportion of 
the sidereal day to the lunar month, 
and a ring of matter equal in diameter 
to the earth and inclined to the ecliptic 
would experience such a precession of 
its nodes as a result of the sun's attrac- 
tion. Because the ring must carry not 
only its own mass but the mass of the 
entire earth, the precession is reduced 
in the proportion of 4,590 to 489,813. 
Because the matter that occasions pre- 
cession is not concentrated in a ring, 
the mean precession must be reduced 
further to two-fifths of the value it 
would have for a ring. Moreover, the 
motion must be reduced yet again in 
the proportion of the cosine of 231 ?, the 
inclination of the plane of the equator 
to the ecliptic. Hence, the precession 
of the equinoxes arising from the sun's 
attraction is equal to 9"7"'20iv annu- 
ally. A greater precession results from 
the attraction of the moon. From the 
measured differences of spring and 
neap tides, Newton had calculated that 
the attraction of the moon on the earth 
is 4.4815 times greater than the attrac- 
tion of the sun. The combined effect of 
both yields a precession of 50"0"'112iv, 
"the amount of which agrees with the 
phenomena; for the precession of the 
equinoxes, by astronomical observa- 
tions, is about 50" yearly" (1, pp. 489- 
491). As with the correlation of g with 
the moon's centripetal acceleration, he 
purported to have reached a precision 
of about 1 part in 3000. 

Paradigm of Modern Science 

So completely has modern physical 
science modeled itself on the Principia 
that we can scarcely realize how un- 
precedented such calculations were. Be- 
fore Newton, only astronomy, the sci- 
ence that dealt with the eternal heav- 
ens, had realized accuracy of a similar 
degree. Some two decades before the 
Principia Robert Boyle had proposed 
Boyle's Law, one of the few precedents 
to Newton's physics, on the basis of 
measurements that frequently varied 
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from theory by 1 part in 100, a lack of 
precision, he said, which was not to be 
avoided in such "nice" experiments (6). 
Newton insisted that it could be and 
must be avoided. He boldly transported 
the precision of the heavens into mun- 
dane physics, and beyond their intrinsic 
interest the calculations in the Principia 
were significant as advertisements of 
the new ideal of physical science thus 
proposed. The new ideal was intimately 
connected with the central conceptual 
innovation of Newtonian science, 
"force," or action at a distance, quanti- 
tatively defined as an element in ra- 
tional mechanics. The correlation of 
the moon's centripetal acceleration with 
the acceleration of gravity, calculation 
of the velocity of sound, and the deri- 
vation of the precession of the equi- 
noxes, together with other examples in 
the Principia, offered a compelling 
demonstration of the descriptive power 
of Newtonian natural philosophy. 

Or was the compelling demonstration 
a cloud of exquisitely powdered fudge 
factor blown in the eyes of his scientific 
opponents? I have chosen the three 
examples above because all of them 
underwent significant modifications in 
the second edition of the Principia. I 
have cited them as they appear in the 
third and final edition, the basis of the 
standard English translation in general 
circulation today. With the exception 
of insignificant modifications of num- 
bers in the correlation of g, as a result 
of the latest French determination of 
the radius of the earth, the final edition 
repeated the second edition. The second 
edition, however, introduced major 
changes in the treatment of all three 
problems, changes that signally in- 
creased the level of apparent precision 
by the mere numerical manipulation of 
the same basic body of data (7-10). 

The second ediltion of the Principia 
was at once an amended version of the 
first edition and a justification of New- 
tonian science. The battle with the con- 
tinental mechanical philosophers who 
refused to have truck with the occult 
notion of action at a distance still 
raged. The second edition made its 
appearance framed, as it were, by its 
two most important additions, Cotes' 
"Preface" at the beginning and New- 
ton's "General Scholium" at the end, 
both of them devoted to the defense 
of Newtonian philosophy, of exact 
quantitative science as opposed to spec- 
ulative hypotheses of causal mecha- 
nisms. By 1713, moreover, Newton's 
perpetual neurosis had reached its pas- 
sionate climax in the crusade to destroy 

the arch-villain Leibniz. Only a year 
earlier the Royal Society had published 
its Commercium epistolicum (11), a 
condemnation of Leibniz for plagiary 
and a vindication of Newton, which 
Newton himself composed privately 
and thrust upon the society's committee 
of avowed impartial judges. In New- 
ton's mind, the two battles merged into 
one, undoubtedly gaining emotional in- 
tensity in the process. Not only did 
Leibniz try to explain the planetary 
system by means of a vortex and 
inveigh against the concept of attrac- 
tion, but he also encouraged others to 
attack Newton's philosophy. His arro- 
gance in claiming the calculus was only 
a special instance of his arrogant pre- 
sumption to trim nature to the mold 
of his philosophical hypotheses. In con- 
trast, the true philosophy modestly and 
patiently followed nature instead of 
seeking to compel her (12). The in- 
creased show of precision in the second 
edition was the reverse side of the coin 
stamped hypotheses non fingo. It played 
a central role in the polemic supporting 
Newtonian science. 

Fiddling with Sound 

In examining the alterations, let us 
start with the velocity of sound since 
the deception in this case was patent 
enough that no one beyond Newton's 
most devoted followers was taken in. 
Any number of things were wrong with 
the demonstration. It calculated a veloc- 
ity of sound in exact agreement with 
Derham's figure, whereas Derham him- 
self had presented the conclusion merely 
as the average of a large number of 
measurements. Newton's assumptions 
that air contains vapor in the quantity 
of 10 parts to 1 and that vapor does 
not participate in the sound vibrations 
were wholly arbitrary, resting on no 
empirical foundation whatever. And his 
use of the "crassitude" of the air par- 
ticles to raise the calculated velocity by 
more than 10 percent was nothing short 
of deliberate fraud. The adjustment in- 
volved the assumption that particles of 
water are completely solid. In fact, 
Newton believed that they contain the 
barest suggestion of solid matter strung 
out through a vast preponderance of 
void. One of the most radical aspects 
of Newtonian science was its concep- 
tion of matter, which approached, with- 
out quite reaching, the notion that 
atoms are point sources of force, put 
forward by the Jesuit natural philoso- 
pher R. J. Boscovich in the middle of 
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the 18th century. The calculation of 
the velocity of sound set this concep- 
tion of matter aside in order to adjust 
the velocity upward by 109 feet per 
second. In all of this, Newton did him- 
self a gross disservice. As I have sug- 
gested, his attempted derivation of the 

velocity of sound from fundamental 

dynamic principles was one of the 
Principia's strokes of genius, an achieve- 
ment wholly without precedent. He ar- 
rived at a figure, 979 feet per second, 
which is roughly 20 percent too low. 

Early in the 19th century, Laplace, 
building from the foundation Newton 
had laid, demonstrated that the correc- 
tion derives from the heat generated in 
the compressions of sound waves; the 
correction is equal to the square root 
of the ratio of the specific heat of air 
at constant pressure to the specific heat 
at constant volume. When Newton 
wrote the Principia, the concept of 

quantity of heat had not been distin- 

guished clearly from temperature, and 
the concept of specific heat did not 
exist, let alone the subtlety of specific 
heats at constant volume and constant 

pressure. Meanwhile, there he stood 
face to face with the hostile continental 

philosophers, his nakedness made mani- 
fest by an uncovered discrepancy of 20 

percent. The very flagrancy of his ad- 

justment in this case becomes evidence 
for the compulsion behind the pretense 
of precision in the other cases. 

In the first edition he had approached 
the velocity of sound in quite a differ- 
ent mood. Impressed perhaps by the 

significance of his own achievement in 

deriving a velocity of sound that ap- 
proached its measured value, and cer- 

tainly not yet assaulted with the hostile 
taunt of occult, Newton had been will- 

ing to leave the demonstration as an 

approximation within broad limits. The 
basic features of the derivation were 
set in the first edition and did not sub- 

sequently change. The numbers were 
different, however. Using a ratio of 
1:850 for the densities of air and 
water, he arrived at a calculated veloc- 

ity of 968 feet per second. Over against 
this value were a wildly varying set of 
measured velocities. Newton reported 
two-one by Mersenne equivalent to 
1474 English feet per second, and one 

by Roberval equivalent to 600 feet per 
second. In view of the discrepancy, he 
chose to make a measurement of his 
own in an arcade of Trinity College, 
adjusting a pendulum to swing in time 
with the return of an echo that traveled 
a total of 416 feet. He was satisfied to 
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determine that the echo was slower in 
returning than the vibration of a pen- 
dulum 5! inches long and faster than 

2 

that of an 8-inch pendulum, yielding a. 
velocity between 1085 and 920 feet per 
second (8, p. 370). The calculated 
value fell squarely between them, and 
the first edition rested its case modestly 
on that loose approximation. 

Perhaps there was more concealed 
in the first edition than meets the eye. 
A faint aura of deception clings to 
Newton's report of previous measure- 
ments and to his own measurement. 
The structure of his presentation im- 
plicitly justified both the necessity of 
a new measurement and its result, since 
its limiting values fell inside the broader 
limits of Roberval's and Mersenne's 
measurements. There were available a 
number of other measurements that 
Newton could have known about, how- 
ever, all of them falling well above his 
calculation of 968 feet per second. In 
fact, Roberval's figure of 600 was ut- 
terly out of line with other 17th-cen- 

tury measurements of the velocity of 
sound. The majority arrived at a value 
higher than the one we accept (13). 
One cannot avoid wondering whether 
Newton performed his experiment be- 
fore or after he made the calculation 
of 968 feet per second. Already in 
about 1694, at any rate, David Gregory 
found him planning to change the sec- 
tion on the propagation of sound in 
order to define its velocity "within nar- 
rower limits" (14, p. 384). A copy of 
the first edition in which Newton en- 
tered projected emendations apparently 
records a new measurement in the 
arcade at Trinity. He now stated that 
the echo was slower in returning than 
a pendulum of 5 inches and faster 
than one of 7 inches, corresponding to 
a velocity between 1109 and 984 feet 

per second (15, p. 531; 16). This 
moved his measurement closer to the 

general range of measurements, but the 
lower limit was now above the cal- 
culated velocity of 968 feet per second. 

What could he do? He could fiddle 
with the numbers. His calculation rested 
on the density of air, and the density 
of air was a difficult thing to measure 
in the 17th century. The ratio of the 
densities of air and water that he used 
in the first edition (1: 850) was arbi- 

trary. In a sheet of "errata" in the first 
edition, he tried both 1 : 900 and 1 : 950 
and found that they yielded velocities 
of 996 and 1023 feet per second. He 
settled for the higher figure. While it 

placed his calculation within the range 

of his new measurement, he may have 
felt that it stood too close to the bot- 
tom limit. It is impossible to unravel 
every detail in the chronology of his 
manipulation of the calculation, but 
the evidence that he tried various de- 
vices cannot be mistaken. In addition 
to the density, he thought of the adjust- 
ment based on the "crassitude" of the 
particles; it appears in the paragraph 
that records his new measurement, 
raising the calculated velocity about 
100 feet per second (15, p. 532). 

It is reasonable to assume that the 
corrections above were made before he 
learned of the measurement by his 
friend William Derham and of the 
work of Joseph Sauveur in acoustics, 
since he crossed out the amended para- 
graph containing his own remeasure- 
ment and henceforth accepted Der- 
ham's value of 1142 feet per second. 
His mention of Sauveur's work, which 
correlated frequency with the length of 
organ pipes, suggests that it served to 
confirm Derham's measure in his mind 
(17). 

Now he had a solid figure on which 
to exercise his mathematical talents. 
The annotated and interleaved copies 
of the first edition in which he prepared 
the corrections for the second edition 
show him manipulating the "crassitude" 
of the particles before he finally chose 
the size that allowed him to increase 
the velocity by one-ninth. After he lit 
on the further correction due to vapors, 
he fiddled with its magnitude as well 
(15, p. 533). Finally he decided to re- 
turn to the density of the air for the 
fine adjustment, and setting the wander- 

ing ratio at 1: 870 he emerged in the 
second edition with a calculated veloc- 

ity of 1142 feet per second. At one 

point in the calculation, although not 
in the conclusion where it belonged, 
he did insert a modest circiter. That 

hardly covered the extent of the illu- 
sion he was attempting to foster. 

Doctoring the Correlation 

In the case of the correlation of g 
with the moon, much more was at 
stake. The correlation was the linchpin 
of the entire argument for universal 
gravitation, and we can understand why 
Newton wanted it to appear precise. 
Nevertheless, in the first edition he had 
been 'content to present it within a 
reasonable margin of error. After list- 

ing available calculations of the moon's 
mean distance, Newton chose 60 times 
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the earth's radius as a just average. At 
such a distance, he calculated, the 
moon would fall 151- feet in 1 min- 12 

ute; hence, at the surface of the earth 
a body should fall 15i feet in 1 sec- 12 
ond, the figure Huygens had estab- 
lished. While the new edition was being 
prepared, Newton sent the editor, 
Roger Cotes, a scholium to Proposition 
IV in which he carried out the correla- 
tion substantially as it finally appeared. 
Since it assumed material from Propo- 
sitions XIX and XXXVII, Newton even- 
tually broke the scholium up and 
inserted it in those two propositions, 
most of it in the latter. In that posi- 
tion the character of the finely cor- 
rected correlation is clear. Proposition 
XXXVII, on the tides, compares the 
force of the sun in attracting the sea 
to the force of the moon. A series of 
corollaries then apply the conclusion 
(and earlier calculations of the com- 
parative masses of the sun and planets) 
to computing the comparative densities 
of the earth and the moon and their 
comparative masses. Corollary 7, which 
contains the correlation, is actually a 
calculation of the mean distance of the 
moon from the value of g. In Proposi- 
tion IV Newton had assumed that the 
moon orbits the center of the earth. In 
Proposition XXXVII, with the relative 
masses of the two known, he corrected 
the distance of the moon by referring 
its orbit to the common center of grav- 
ity of the two bodies. If the mean dis- 
tance of the moon is 60? (in edition 
three, 60') times the maximum radius 
of the earth, then its centripetal ac- 
celeration will correspond to a value 
of g, in Paris, of 15 feet, 1 inch, 5.32 
lines. When the measurement by the 
pendulum is increased by 3.267 lines 
for the centrifugal effect in Paris, it 
yields a value for -g of 15 feet, 1 
inch, 5.32 lines, slightly different figures 
from those in the third edition with an 
even higher degree of precision (18). 
What had Newton demonstrated? He 
had shown that he could calculate the 
distance of the moon from the value of 
g, and he had shown, what should be 
obvious, that he could start the calcu- 
lation with a value of g stated with 
whatever degree of precision he might 
choose. Even in these terms the corre- 
lation is delusory since it employs the 
comparative masses of the moon and 
the earth drawn from a dubious calcu- 
lation of the tides that I shall discuss in 
a moment. Beyond this, the correlation 
of g with the moon in Proposition 
XXXVII demonstrates nothing whatever. 
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Indeed, Proposition XXXVII serves 
to indicate that even the modest cor- 
relation of the first edition is somewhat 
deceptive. To be valid, the correlation 
must start with two quantities that are 
measured independently, the distance 
of the moon and g. Huygens had pro- 
vided the latter with high precision. For 
the former Newton had a range of 
varying measurements. Most astrono- 
mers, he said, set it at 59 radii of the 
earth. Vendelin set it at 60, Coper- 
nicus at 60l, Kircher at 62', and 
Tycho at 562. Tycho's result was 
founded on a false theory of refraction, 
however, and when his observations 
were corrected they gave a distance of 
61. From this set of numbers Newton 
extracted an average of 60 which 
yielded in turn a centripetal accelera- 
tion that correlated with a value of 

5g of 15 feet, 1 inch. It is difficult to 
believe that the value of -g did not in- 
fluence his averaging of the lunar mea- 
surements. Significantly, in edition two 
he omitted Kircher's measure and 
found that the correction of Tycho's 
came, not to 61, but to 601 times the 
radius of the earth. 

When he placed it in Corollary 7 to 
Proposition XXXVII, Newton did not 
indeed explicitly present the correla- 
tion as anything more than an exact 
calculation of the moon's mean dis- 
tance. When he thought originally of 
making it a scholium to Proposition IV, 
however, he seemed to be trying im- 
plicitly to present it as something else. 
Cotes, who had caught the spirit of the 
enterprise rather well, saw as much. 
"In ye Scholium of IVth Proposition," 
he suggested, "I think the length of ye 
Pendulum should not be put 3 feet 
and 8j lines; for the descent would 
then be 15 feet 1 inch 1! line. I have 3 

considered how to make yt Scholium 
appear to the best advantage as to ye 
numbers, & I propose to alter it thus" 
(19, 20). He went on to select values 
for the distance corresponding to 10 
on the earth's surface and for the lati- 
tude of Paris that led to a very precise 
correlation. Cotes need not have wor- 
ried. Newton was also considering how 
to make the correlation appear to the 
best advantage as to the numbers. Ulti- 
mately he settled on different values for 
the elements of the calculation, but by 
treating the distance of the moon as 
terminus ad quem instead of terminus 
a quo, he reached a correlation quite 
as satisfactory as Cotes'. In both cal- 
culations it was more public relations 
than science. 

Manipulating the Precession 

Newton's concern that the numbers 
appear to best advantage in his corre- 
lation with the moon, however, was as 
nothing beside his efforts on the pre- 
cession of the equinoxes. Precession, in 
his treatment of it, was a quintessential 
demonstration of the ultimate advan- 
tage of Newtonian science over the 
reigning mechanical philosophy, a 
quantitative derivation of a perturba- 
tion which qualitative mechanical ex- 
plications did not even dare to men- 
tion. The very claim of Newtonian 
science on the allegiance of natural 
philosophers depended on quantitative 
precision in such cases. In the case of 
precession, moreover, the correction of 
a faulty lemma in edition one imposed 
the necessity of an adjustment of more 
than 50 percent in the remaining num- 
bers. Without even pretending that he 
had new data, Newton brazenly manip- 
ulated the old figures on precession so 
that he not only covered the apparent 
discrepancy but carried the demonstra- 
tion to a higher plane of accuracy. 

Like his derivation of the velocity 
of sound, Newton's demonstration of 
the precession was a brilliant insight 
tempered by limitations that the level 
of the 17th-century dynamics imposed. 
He identified the same cause of pre- 
cession that celestial dynamics still em- 
ploys-the attraction of the sun and 
moon on the bulge of matter about 
the equator. He lacked the conceptual 
tools to treat it adequately, however. 
The Principia itself established the ba- 
sic equation of the dynamics of linear 
motions relating force to acceleration. 
Although the concept of moment was 
present in the law of the lever, dynam- 
ics possessed as yet no equation corre- 
sponding to Newton's second law that 
related moment to angular acceleration, 
and it possessed no concept similar to 
moment of inertia that played the role 
corresponding to mass, which was also 
Newton's creation, in the equation of 
linear motions. His demonstration 
treated precession on the analogy of the 
lunar nodes, the motion of which he 
attempted to derive by extending both 
the principles used to derive perturba- 
tions in the shape of the orbit and the 
quantities thus found. To understand 
how limited the basic concepts relevant 
to rotational motion were, consider his 
correction of the precessional motion 
by the cosine of 233?, the inclination 
of the equator to the ecliptic. As it 
appears in his demonstration, the cor- 
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rection amounts to taking the compo- 
nent of attraction parallel to the equa- 
tor, just as he had used the effective 
component of force in computing the 
tides. In this case, however, in which 
the very effect depends on the inclina- 
tion of the equator to the ecliptic, his 

procedure treated the effect as though it 
would be maximized if the inclination 
were zero. Since the result of this cor- 
rection reduced the effect to 0.91706 
of the value it would otherwise have 
had, it may appear to be an application 
of the fudge factor. In this instance, 
however, which appeared unchanged in 
all the editions of the Principia and es- 

caped comment even by the sharp- 
eyed Cotes, we have to do more prob- 
ably with a technical limitation. Cor- 

respondingly, nothing in his derivation 
utilized the different inclination of the 

equator from the inclination of the 
lunar orbit, although the precession was 
calculated directly from the motion of 
the lunar nodes. 

Although the alteration involved a 
considerable refinement in his treatment 
of the tides, the refinement was neces- 
sitated by the need to make the num- 
bers appear to best advantage as a 
result of other changes. As I have ex- 

plained, the demonstration began with 
the mean motion of the lunar nodes, 
and adjusted the value first in the ratio 
of the two periods of rotation and then 
in the ratio of the total mass of the 
earth to the mass of the ring of matter 

responsible for the precession. At a 
later step, he reduced the motion fur- 
ther in the proportion of the cosine 
of 231?. All of this was a straight- 
forward matter of ratios that allowed 
no margin for maneuver. Two major 
adjustments that remained supplied the 

principal substance of calculation. On 
the one hand, the comparison with the 
lunar nodes assumed the matter caus- 
ing the precession to be concentrated 
in a ring around the equator, whereas 
it is in fact spread unevenly over the 
surface of an oblate spheroid. A sub- 

sidiary demonstration (or lemma) es- 
tablished the ratio of the further reduc 
tion thus entailed. On the other hand, 
the comparison with the lunar nodes 
involved only the attraction of the sun. 
The attraction of the moon is several 
times more potent in causing preces- 
sion, however, and the ratio in this case 
was established from the variation be- 
tween spring and neap tides. The nub 
of Newton's derivation of the preces- 
sion lay in the relation of these two 
factors, and the problem he faced in 
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the new edition lay in the major re- 
vision he introduced in the first of 
them, the ratio between the effect of 
matter concentrated in a ring and that 
of matter spread over an oblate sphe- 
roid. Once that revision was made, 
Newton fell back on the tides, which 
became in his hands as fluid as the 
water composing them. 

In the first edition, Lemma I, Book 
III, provided the adjustment from a 
ring of matter at the equator to an 
oblate spheroid. Suffice it to say that the 
demonstration is perplexed, and any- 
one interested in the difficulties that ro- 
tational motion presented to early dy- 
namics will find it a revealing case 

study. In attempting to compare the 
vis et efficacia tota of the two distribu- 
tions of matter to rotate the earth 
about a particular axis, he employed 
among other things the moment (or 
"efficacy of the forces") of a vector 

passing through that axis. The lemma 
arrived at a ratio of 1:4. Applied to 
the motion derived from the lunar 
nodes, this ratio yielded an annual pre- 
cession of 6"12"'2iv, due to the attrac- 
tion of the sun. From the tides he 

computed that the moon is 63 times 
3 

more effective than the sun, so that the 
two together produce a precession of 
45"24"'1 5iv. Clearly a further adjust- 
ment was needed, and Newton found 
one in the density of the earth. The 
earth is denser at the center; as a con- 

sequence, it is higher at the equator 
than the computation from centrifugal 
force alone reveals, with the result that 
the precession is increased in the ratio 
of 10 : 8 or 6: 5. When the resulting 
figure was reduced by the cosine of 
23 O?, introduced in edition one at this 

point, it yielded a precession of 49"- 
58"', in sufficient agreement with the ob- 
served value of 50" (8, pp. 467-473). 

By 1694 he recognized the fault in 
Lemma I (21). In the second edition 
two lemmas replaced it; they arrived 
at a ratio, not of 1:4, but of 2: 5. 
Without any further adjustments, the 
new ratio would have left the preces- 
sion more than 50 percent too large. 

Fortunately, the other major correc- 
tion, the ratio of the attractions of sun 
and moon as established by the tides, 
was amenable. This adjustment worked 
out so well that he abandoned the ad- 
ditional specious correction from the 

density of the earth despite the explicit 
statement in edition two that, because 
of the greater rarity of matter near the 
surface of the earth, the diameter at 
the equator may be nearly 15 miles 

greater than the calculation from cen- 
trifugal force alone would suggest (22). 

In all three editions, Newton relied 
on the same body of data about the 
tides, two sets of observations published 
in the Philosophical Transactions in 
1668 in response to the Royal Society's 
early diligence in collecting a complete 
history of nature. In light of the con- 
clusions Newton ultimately drew from 
the observations, it is worthwhile to 
savor their precision in their own 
words. Samuel Colepresse measured the 
tides at Plymouth. He found that "the 
Water usually riseth about 16 Foot (I 
say usually, because it may vary in this 
Part from the lowest Neap to the high- 
est Annual Spring above 7 or 8 Foot) 
. .." (23). If the title to the paper is 
correct, the statement rested on obser- 
vations made during the year 1667 
alone. Since the Royal Society began 
to solicit such information only in the 
autumn of 1666, there is no reason to 
think the measurements were more ex- 
tended. The same strictures apply to 
Samuel Sturmy's observations of the 
tides in the mouth of the Avon below 
Bristol (24). The highest spring tide 
there "flows in height about 7' fath- 
oms, or 45. foot; the lowest Neap-tydes 
flowing in height 25. foot." Sturmy's 
paper included a table of the flow of a 
spring tide measured every quarter 
hour through its total span of 5 hours 
and of the ebb measured every hour 
through its span of 7 hours. Each 
column is summed the same, "45. feet 
circiter"; the numbers in one add, in 
fact, to 44 feet, 1 inch, and in the 
other to 45 feet, 101 inches. (Of course, 
the measurement of the total tide was 
not reached by adding the two col- 
umns.) Although entries in the table 
include measurements to half inches, 
he remarked that making them always 
that accurate "is neither easie, nor 
material, or usefull" (25). 

In the first version of Book III, what 
is known as "The System of the 
World," Newton concluded from these 
observations that the ratio of attrac- 
tions is 1: 53. The spring tide is pro- 3 

duced by the combined attractions of 
moon and sun [L(una) + S(ol)], the 
neap tide, when the moon is in quadra- 
tures, by the excess of the moon's at- 
traction over the sun's (L-S). Hence 
the basic equation was (L+S)/(L- 
S) = 9/5. On this occasion, he did 
not even mention Colepresse's obser- 
vations; the ratio of 9/5 comes from 
Sturmy alone. Since the moon declines 
23'? from the plane of the equator at 
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the time of the neap tide, whereas the 
two luminaries act in the same plane at 

spring tide, the force of the moon must 
be diminished correspondingly. The 

equation became (L+S)/(.841L- 
S) 9/5, or L = 5i-S, a ratio he 
adjusted minimally to 5. (1, p. 593). 
In "The System of the World" the ratio 

played no further function; although he 
had stated the cause of the precession, 
he did not attempt to derive it. In edi- 
tion one he did, and the computed 
amount of the sun's effect required a 
larger ratio. Colepresse's measurements 
were summoned to the aid of Sturmy's; 
they produced a ratio of 7. Newton 

averaged the two at 6- and extracted 
the value of precession stated above 
(8, pp. 464-465). 

Mending the Numbers 

Then came the new lemmas and 
the need for a radical reduction in 
the calculated precession. In February 
1712, Cotes' painful progress through 
the text he was editing arrived at Prop- 
osition XXXVII, on the tides. Appar- 
ently the ratio had returned to 5- by 
this time, probably by preferring 
Sturmy's measurements to Colepresse's 
as the later editions of the Principia 
did. After correcting Newton's calcu- 
lation to 53, Cotes noted that this ratio 
would change the figures in the corollar- 
ies to the proposition, especially the 

comparative masses of the moon and 
the earth. "This alteration," he contin- 
ued, "will very much disturb Your 
Scholium of ye 4th Proposition [the 
correlation of g with the moon] as it 
now stands; neither will it well agree 
with Proposition 39t1 [the precession] 
..." (26). In his reply, Newton con- 
fessed that he had lost his copy of the 
amended Proposition XXXIX and did 
not know how to make the further cor- 
rection. "If you can mend the num- 
bers," he added candidly, "so as to 
make ye precession of the Equinox 
about 50" or 51", it is sufficient" (27). 

Cotes had fully grasped the nature 
of the game by now; and as long as 

they chose to play it, he intended to 

play it well. He pointed out to Newton 
that the greater bulge at the equator 
explicitly considered in edition two, 
so that the diameter through the equa- 
tor would exceed that through the 
poles by nearly 32 miles instead of 
171, raised problems. The passage in 
the first edition correcting the precession 
by the ratio 6 : 5 because of variations 
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in density had been dropped, but New- 
ton now proposed a brief statement 
that the increase in precession due to 
the added length of the equatorial 
diameter was compensated by the de- 
crease due to the greater rarity. "You 
have very easily dispatch'd the 32 Miles 
in Prop. XXXIXth . . .," Cotes com- 
mented with a muted note perhaps of 

irony, perhaps of admiration, perhaps 
of both (28). 

He had hardly begun to see the ex- 
tent of Newton's dexterity. The basic 

equation establishing the ratio of S to L 
had been rather crude. Newton began 
to refine it. The highest tides do not 
occur exactly at syzygies but somewhat 
after, when the luminaries are approxi- 
mately 15? out of conjunction or op- 
position. Thus, the force of the sun 
must be reduced at both its appearances 
in the equation. With the new equa- 
tion, Newton got a ratio of 4-, and 
in a manuscript revision of Proposi- 
tion XXXIX, he calculated from that 
ratio to a precession of 51"58/"401v. 
"If the force of moon in moving the 
sea were to the force of the sun as 44 

7 

to 1," he continued, "(for the propor- 
tion of these forces cannot yet be de- 
fined very accurately from the phe- 
nomena), an annual precession of the 
Equinoxes of 50"40"'43iv would re- 
sult" (29). Later he took the cal- 
culation a step further. If the ratio 
were 41, the precession would be 
50" 14"'45'v (30). 

Before the full implications of this 
line of thought could be explored, 
Cotes produced a new problem. Ac- 
cording to Newton's lunar theory, the 
moon approaches nearer to the earth 
in syzygies than in quadratures. "But 
this allowance would increase the num- 
ber 41 so much as to give some dis- 
turbance to the XXXIXth Proposition 
& the Scholium of the IVtl as they 
now stand, unless," he added discreetly, 
"You think fit to ballance it some other 
way, for there is a latitude in that 
XXXVIIt" Proposition" (31). When 
Newton seemed to demur, he presented 
the arithmetic. If the new factor were 
introduced without other changes, the 
ratio would increase to 52. In order 
to save the value 47, the ratio of 
spring tide to neap would have to be 
set at 11/6, but 11/6 fell outside the 
measurements at Plymouth and Bristol. 
"I shall therefore leave it to Your self 
to settle ye whole Proposition as You 
shall judge it may best be done" (32). 

Over a month passed before Newton 
sent Cotes a revision of Proposition 

XXXIX, a revision which not only in- 

corporated the varying distances of the 
moon but achieved the ratio of 41 

2 

as well. He had discovered the secret, 
which lay in the fact that high tides 
occur after the luminaries are in 
syzygies and quadratures. The observa- 
tions were sufficiently vague that he 
could adjust the exact angles at will 
to yield whatever ratio he chose. In 
February he was reducing the force of 
the sun by 6/7 (corresponding to an 
angle of 15l?). Now he increased 
the reduction nearly to 4/5 (an angle 
of 17 ?0) and, beginning to savor the 
possibility of a truly impressive demon- 
stration, he shifted to the decimal 
0.819152 (the cosine of 35?, twice the 
angular distance between the sun and 
the moon at the spring tide). With the 
ratio of 1: 4 in hand, he went on 

2 

to correlate g with the moon, placing 
the correlation now in Corollary 7 of 
the proposition, and with the same ratio 
he calculated the precession given 
above. Cotes was not yet satisfied. He 
thought that the correction for the dis- 
tance of the moon was incorrect, but 
he hoped equally to retain what had 
been gained. "I could wish when the 
whole is settled that the proportion 
of 41 to 1 may be retain'd for the sake 
of Proposition XXXIX. I think there 
is no Proposition in Your Book which 
does more deserve Your care" (33). 
Newton was willing enough; he had 
found the key. He not only accepted 
Cotes' correction, but in compensating 
by increasing the angular distance 
again, he pushed the ratio below 41 
and improved on the calculated preces- 
sion still more. Cotes was delighted. "I 
am very glad to see the whole so per- 
fectly well settled & fairly stated, for 
without regard to the conclusion [sic] 
I think ye distance of 18! degrees 
ought to be taken & is much better 
than 17' or 15- & the same may be 
said of ye{ other changes in ye prin- 
ciples from which the conclusion is in- 
ferr'd" (34). The equation which had 
started out as (L+S)/(.841L-S) = 
9/5 now read (35) 

1.017342L + .7986355S 
: 9/5 .9828616 X .8570328L - .7986355S 

L 4.4824S 

With that ratio he carried through the 
correlation of g with the moon and 
calculated the precession of the equi- 
noxes, both with an ostensible precision 
of about 1 part in 3000. Some might 
consider it a rather ambitious conclu- 
sion to draw from the measurements 

757 



of a retired sea captain who had 
summed up two unequal columns to 
"45. feet circiter." 

The emendations to the second edi- 
iton cast a special light on the revolu- 
tion in scientific discourse that Newton 
concluded. "I often say," Lord Kelvin 
asserted more than a century and a 
half later, "that when you can measure 
what you are speaking about and ex- 
press it in numbers you know some- 
thing about it; but when you cannot 
measure it, when you cannot express it 
in numbers, your knowledge is of a 
meagre and unsatisfactory kind: it may 
be the beginning of knowledge, but you 
have scarcely, in your thoughts, ad- 
vanced to the stage of science . . ." 
(36). What Kelvin had in mind was 
not what Cotes called "making it ap- 
pear to the best advantage as to the 
numbers," but the history of the second 
edition suggests that the one may fre- 
quently be indistinguishable from the 
other. Undoubtedly the new pattern of 
natural science that Newton more than 
any other one man raised to dominance 
rested on profound epistemological in- 
sights. Undoubtedly the Principia dis- 
played them apart from the alterations 
introduced in edition two. Undoubtedly 
the displacement of the world of more 
or less by the universe of precision 
was a remorseless and irreversible proc- 
ess. Nevertheless, successful polemics 
are the necessary condition of every 
intellectual revolution. "I am satisfied 
that these exactnesses . . . are incon- 
siderable to those who can judge rightly 
of Your book": Cotes wrote to Newton 
as they polished the final decimal points 
of the correlation, "but ye generality of 
Your Readers must be gratified wtl 

such trifles, upon which they commonly 
lay ye greatest stress" (37). Whether 
or not he considered them trifles, New- 
ton comprehended perfectly the nature 

of the polemic he deployed. And 

among the other factors that provoked 
Lord Kelvin's dictum, and all that it 

represents in modern science, not the 

least was the fudge factor, manipulated 
with unparalleled skill by the unsmiling 
Newton. 
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