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supramaximum in normal rats, or normal rats 
in which stimulating electrodes were inserted 
into the locus coeruleus but no stimulating 
currents were applied (sham-stimulation). 

14. As the immunocytochemical staining method 
is now applied, we could not objectively 
evaluate gradations of staining intensity when 
comparing different experimental specimens. 
Therefore, all unequivocally reactive neurons 
were grouped together and the results were 
expressed as a percentage of the total num- 
ber of Purkinje neurons visualized within 
the section. In the results of Fig. 2, since 
the response is evaluated only in terms of 
a single all-or-none detection threshold, rather 
than by graded measurement, it is not sur- 
prising that 10-6M norepinephrine and control 
values are equivalent, and that at 10-5, 10-4, 
and 10-3M norepinephrine, cell counts are 
similar. A dose-dependent rise would be un- 
likely if a homogeneous population of Purkinje 
cell receptor content (8) and distribution exists 
from cell to cell. Granule cells appear to be 
maximally reactive even in the control condi- 
tions and it is difficult to determine whether 
the reactive granule cells are qualitatively 
changed by any of the experimental conditions 
studied. 
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Although the nutritional importance 
of selenium and its relation to vitamin 
E are well known (1), definition of a 
specific biochemical role for selenium 
has so far proved elusive. We present 
evidence here for a role of Se in gluta- 
thione (GSH) peroxidase (glutathione: 
H,O,2 oxidoreductase, E.C. 1.11.1.9; 
2GSH + H2O02-GSSG + 2H20) which 

provides further evidence for the es- 

sentiality of Se for animals and for 
one of its biochemical functions, and 

provides a plausible explanation for its 
relation to vitamin E. 

Earlier, we found that dietary Se 

helped prevent oxidative damage to rat 

erythrocytes incubated in vitro, as 
evidenced by decreased hemolysis and 
decreased hemoglobin oxidation (2). 
These effects of dietary Se were depen- 
dent on the addition of glucose in vitro, 
and the well-known protection against 
hemolysis and hemoglobin oxidation af- 
forded by glucose (3) was virtually 
absent in erythrocytes from rats defi- 
cient in Se. A related dietary inhibitor 
of oxidative damage, a-tocopherol (vita- 
min E), protected against hemolysis 
whether or not glucose was present, 
but did not protect against hemoglobin 
oxidation. This result demonstrated that 
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the effect of Se was specific and distinct 
from that of vitamin E (2). 

Protection by glucose against oxida- 
tive damage to red blood cells has been 
attributed to the maintenance of the 
intracellular concentration of reduced 
glutathione (GSH) through the com- 
bined actions of the enzymes, glucose- 
6-phosphate dehydrogenase [which gen- 
erates reduced nicotinamide adenine 
dinucleotide phosphate (NADPH)] and 
glutathione reductase [which generates 
GSH from NADPH and oxidized gluta- 
thione (GSSG)] (3). At least in part, 
GSH acts by destroying hydrogen per- 
oxide and fatty acid hydroperoxides 
through reactions catalyzed by GSH 

peroxidase (3, 4). In our earlier work 
(2) we found that the GSH concentration 
was higher in Se-deficient than in Se- 

adequate erythrocytes and that it was 
as effectively maintained during incuba- 
tion in vitro. This suggested that the de- 
fect in Se deficiency was not in the 
maintenance of GSH but rather in the 
utilization of GSH in protecting the 
cell (2). We therefore focused on a pos- 
sible role for Se in the GSH protection 
against hemoglobin oxidation and ulti- 

mately on the enzyme (GSH peroxidase). 
All experiments were performed with 
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Abstract. When hemolyzates from erythrocytes of selenium-deficient rats were 
incubated in vitro in the presence of ascorbate or H202, added glutathione failed 
to protect the hemoglobin from oxidative damage. This occurred because the 
erythrocytes were practically devoid of glutathione-peroxidase activity. Extensively 
purified preparations of glutathione peroxidase contained a large part of the 15Se 
of erythrocytes labeled in vivo. Many of the nutritional effects of selenium can 
be explained by its role in glutathione peroxidase. 
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erythrocytes from rats fed either a Se- 
deficient (Se content, < 0.01 ppm) or 
Se-supplemented (Se content, 0.5 ppm; 
supplied as sodium selenite) diet (2). 
Erythrocyte hemolyzates prepared from 
rats receiving the respective diets are 
called (for convenience) Se-deficient or 
Se-sufficient hemolyzates. Because previ- 
ous experiments showed that the effects 
of Se in preventing oxida,tive damage 
were independent of vitamin E (2), all 
diets in our studies contained 50 mg of 
dl-a-tocopherol per kilogram of diet. 
The rats received the respective diets 
for at least 6 weeks before blood 
samples were taken. Erythrocytes were 
centrifuged from heparinized blood 
taken by heart puncture, the buffy coat 
was removed by aspiration, and the 
erythrocytes were washed three times 
with isotonic saline-phosphate buffer at 
pH 7.4 (2). The cells were then hemo- 
lyzed with an equal volume of water; 
hemoglobin content was measured by 
the cyanomethemoglobin method (5), 
and hemoglobin oxidation was followed 
by the methods described by Mills (6); 
GSH was measured as described pre- 
viously (2). 

Ascorbate- and H202-induced hemo- 
globin oxidations were quantitated in 
hemolyzates incubated in vitro by mea- 
suring, respectively, choleglobin forma- 
tion and increase in absorbance at 627 
nm by slight modifications of methods 
described by Mills (6). As shown in 
Table 1, GSH decreased both ascorbate- 
and H202-induced oxidations of 'hemo- 
globin in Se-sufficient hemolyzates, but 
GSH did not decrease hemoglobin oxi- 

Table 1. Effect of glutathione (GSH) on the 
oxidation of hemoglobin (13) induced by 
ascorbate and by H.,O., in Se-sufficient (Se+) 
and Se-deficient (Se-) erythrocyte hemoly- 
zates. Ascorbate-induced oxidation is expressed 
as the percentage of choleglobin formed; 
H202-induced oxidation is expressed as the 
increase in optical density at 627 nm. 

Source Hemoglobin oxidation 

hemoly- GSH Ascorbate- lemoly- induced 120- 
zate M induced 

Se- - 19.4 0.107 
Se- + 27.7 0.114 
Se+ - 20.4 0.100 
Se+ + 6.5 0.036 

dation in Se-deficient hemolyzates. 
Without added GSH, hemoglobin oxi- 
dations were similar in Se-sufficient and 
Se-deficient hemolyzates. The oxida- 
tion of hemoglobin by H202 was easily 
visible as a brownish-green discolora- 
tion within 2 minutes after H202 was 
added. These studies suggested that the 
activity of the GSH peroxidase may be 
much lower in Se-deficient hemolyzates. 

It has been shown that Se-deficient 
hemolyzates have much lower GSH 
peroxidase (method in legend of Fig. 1) 
as compared to Se-sufficient hemo- 
lyzates [for example, at 66 days on ex- 
periment the value was 10.0 ? 0.5 
(S.E.) compared to 55.5 ? 2.1 enzyme 
units per milligram of hemoglobin] (7). 

The Se-dependent GSH peroxidase 
activity could not be restored to the Se- 
deficient hemolyzates by incubating for 
30 minutes with either 6.3 piM sodium 
selenite alone, or combined with 25 
mM GSH or 25 mM dithiothreitol, sug- 

gesting that the enzyme had not simply 
been oxidatively deactivated in Se- 
deficient hemolyzates. Enzyme activity 
did not disappear upon dialysis against 
any of the following: saline-phosphate 
buffer (2), 5 mM GSH in buffer, or 
5 mM GSH plus 1 mM EDTA in buffer. 
Also the enzyme activity was not re- 
tarded on G-25 Sephadex. These ob- 
servations suggested that Se may be an 
integral part of GSH peroxidase rather 
than a loosely bound cofactor of low 
molecular weight. 

To test the hypothesis that Se is a 
component of GSH peroxidase, we par- 
tially purified GSH peroxidase from 
erythrocytes of Se-adequate rats which 
2 or 4 weeks earlier had been injected 
with 75Se as sodium selenite. By DEAE- 
Sephadex chromatography (Fig. 1, top), 
GSH peroxidase was separated from the 
large hemoglobin peak and some minor 
erythrocyte proteins. Approximately 60 
percent of the 7Se in the initial hemo- 
lyzate cochromatographed with the 
GSH peroxidase activity. There were 
no other substantial 75Se-containing 
peaks. Fractions containing GSH per- 
oxidase were concentrated and re- 
chromatographed on Sephadex G-150 
(Fig. 1, bottom). Two 75Se-containing 
peaks were obtained corresponding to 
approximate molecular weights of 
90,000 and 25,000. The lower-molec- 
ular-weight peak, which has not been 
identified, contained insignificant GSH 
peroxidase activity. The peak of 90,000 
molecular weight corresponded to the 
GSH peroxidase activity and contained 
about 70 percent of the 7rSe applied to 

Fig. 1. Purification of GSH peroxidase. (Top) Erythrocytes sep- 
arated from 3 ml of heparinized blood from a rat injected 2 
weeks earlier with 10 /Ac of sodium [75Se]selenite were hemolyzed 
with water. Approximately 90 percent of the hemoglobin pre- 
cipitated on Gvernight storage at 4?C, with min:mal loss of 
GSH-peroxidase activity. The supernatant containing 75 percent 
of the 75Se was chromatographed on DEAE-Sephadex A-50, 
eluting with 0.05M tris buffer, pH 8.0, and a linear gradient of 
0.0 to 0.5M NaCl (dashed line). The GSH peroxidase was 
assayed by a modification of Mills' procedure 2 (14). The incu- 
bation mixture at 37?C contained 0.08M sodium phosphate 
(pH 7.0), 0.08 mM EDTA, 1.0 mM sodium azide, 0.40mM 
GSH and 0.25 mM H_,O,. GSH was determined at 3-minute 
intervals (15). An enzyme unit represents a decrease in GSH 
concentration of 0.001 log unit per minute, after subtraction of 
the nonenzymic rate. The 7Se was measured with a crystal 
scintillation spectrometer. (Bottom) The DEAE-Sephadex A-50 
column fractions containing GSH peroxidase activity from 3 ml 
of blood from a rat injected 4 weeks earlier with 100 /c of 7Se 
were pooled, concentrated by ultrafiltration, and rechromato- 
graphed on Sephadex G-150, eluting with 0.05M tris buffer, 
pH 8.0. OD, optical density; V,, void volume. 
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the column. At the concentration pres- 
ent in the eluate, no protein could be 
detected in the active peak by absorb- 
ance at 280 nm, suggesting that ex- 
tensive purification of the enzyme had 
been achieved. Although we have not 
yet completely purified the rat enzyme, 
cochromatography of 75Se with GSH 
peroxidase activity through two highly 
effective purification steps suggests that 
Se is an integral and necessary part of 
the enzyme. In our laboratory the 
enzyme from ovine blood has been puri- 
fied, yielding a preparation containing 
at least 2 gram-atom of Se per mole of 
enzyme (8). 

Flohe (9) reported that bovine eryth- 
rocyte GSH peroxidase contains no non- 
protein prosthetic group; however, a Se 
moiety would probably not be detected 
by the spectrophotometric methods 
used by Flohe. Selenite (10) or Se- 
amino acids (11) enhance the reducing 
ability of GSH in model systems, and 
SH groups in GSH peroxidase appear 
to change their redox state during the 
catalytic process (9). Whether Se in the 
enzyme participates in these redox re- 
actions or has some other function is 
not known. 

Several groups of investigators (3) 
have emphasized the role of GSH per- 
oxidase as the primary mechanism for 
degrading low levels of H202 in cells. 
Since GSH peroxidase also acts on 
hydroperoxides of unsaturated fatty 
acids (4), the enzyme plays an impor- 
tant role in protecting membrane lipids, 
and thus the cell membranes, from oxi- 
da,tive disintegration. Failure of per- 
oxide destruction can explain the hemol- 
ysis in vitro and oxidative damage 
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nutritional diseases respond to Se but 
not to vitamin E (1). On the other 
hand, certain tissues or subcellular com- 
ponents may not be adequately pro- 
tected from oxidant damage because 
they are inherently low in GSH peroxi- 
dase even with adequate dietary Se. 
Damage to such tissues would be ex- 
pected to be aggravated by diets high in 
unsaturated fatty acids and to respond 
adequately to vitamin E but not to Se. 

Measurement of GSH peroxidase may 
provide a useful means for defining Se 
requirements and for identifying Se 
deficiency in animals and humans. With 
purified GSH peroxidase it should be 
possible to identify the active form of 
Se and further clarify its role. 
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the coin. The thumb of the turning 
hand pushed on one rim and the fore- 
finger pulled the opposite rim around. 
As the fingers came together, the thumb 
slid back so that it could engage the 
other rim while the index finger moved 
forward to catch the edge released by 
the thumb. This operation was repeated 
over and over, turning the coin end 
over end. The coin seemed to stretch 
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Haptic Illusion: Apparent Elongation 
of a Disk Rotated between the Fingers 

Abstract. A disk (coin) turned end over end between thumb and forefinger feels 
longer to the turning hand. The illusion grows rapidly for 30 seconds but does 
not become asymptotic within 60 seconds. The illusion increases with coin size 
and turning rate, and is independent of holding pressure. It appears to involve 

illusory mechanisms in both hands. 
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