
Operations Research: Some 
Contributions to Mathematics 

Applied mathematics gets a new surge of life 
from techniques of operations research. 

Thomas L. Saaty 

Bertrand Russell once defined mathe- 
matics as the "subject in which we 
never know what we are talking about 
nor whether what we are saying is 
true" (1). In this definition he is not 
questioning the validity of mathemati- 
cal thinking but its applicability to the 
real world. I have applied the same type 
of definition to operations research: 
"The subject in which we never know 
the real problem we should be talking 
about nor whether our solution of it 
has any relevance to reality." Never- 
theless, we do such research because 
people have problems and, as scientists, 
we believe that any model is better than 
none; it is all right to give bad answers 
to problems if worse answers would 
otherwise be given. 

Operations research is a field of 
science concerned with developing 
ideas and methods to improve decision- 
making. Decision-making involves the 
identification of values, objectives, 
priorities, means, resources, and con- 
straints under conditions of certainty 
or uncertainty for short- or long-range 
local or global purposes. Since organi- 
zational structure is an important as- 
pect of a decision process, it is also 
necessary to consider information flow, 
level and type of participation, and the 
socioeconomic framework. Decision 
rules are then introduced and methods 
(qualitative or quantitative) are devel- 
oped to apply these rules. It is mostly 
these methods that bring decision-mak- 
ing close to mathematics by borrowing 
ideas from it and frequently expanding 
and enriching these ideas. In recent 
years we have become aware of a lack 
of basic mathematical concepts needed 
to make better decisions in complex 
social, political, economic, and related 
problems. Some people have been at- 
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tempting to remedy this problem, but 
progress has been slow and difficult. 

Individuals trained in the tradition of 
the modern school of pure mathematics 
have the tendency to assume that signifi- 
cant contributions to the development 
of their subject can only come from 
research conducted by pure mathema- 
ticians on structures gradually evolved 
and nurtured by them. Therefore, some 
may infer that very few fundamental 
contributions to mathematics can come 
out of applications; they are always 
ready to defend mathematics because 
they fear that its loftiness and beauty 
may be marred by admitting the sus- 
picious and sometimes unorthodox prac- 
tices of those who apply the subject to 
the real world. But mathematics has 
proven itself a tool for better under- 
standing; the concepts of mathematics 
as a formal discipline and as a tool 
provide mutual growth and enrich- 
ment of the field. 

If one divides the pursuit of the de- 
velopment of mathematical models into 
(i) finding bounds on solutions, (ii) exis- 
tence and uniqueness, (iii) characteriza- 
tion, (iv) construction, (v) convergence, 
and (vi) approximation and error, then 
operations research contributions to 
mathematics have occurred mostly in 
the areas of characterization and con- 
struction. In addition, the wide use of 

athematical models in applications 
has helped draw attention to a number 
of areas of mathematics that had not 
previously received such close scrutiny 
or thorough treatment. Many problems 
involving stochastic processes fall into 
this category. Examples are search 
theory, inventory theory, and queueing 
theory. 

A list of operations research contribu- 
tions to mathematics, and in particular 

to applied mathematics, would include 
linear and nonlinear programming, 
stochastic programming, queueing the- 
ory, search theory, inventory theory, 
scheduling, decision and value theo- 
ries, game theory, differential games, 
dynamic programming techniques, opti- 
mization in integers, network flows and 
network design, algorithms, and the new 
concept of fuzzy sets. However, these 
contributions may be divided into two 
basic categories: those concerned with 
stability and those concerned with opti- 
mization. One can unify the various 
methods of operations research within 
these two fundamental concepts under- 
lying the use of mathematics in the 
real world (2). 

Operations research contributions 
concerned with stability include those 
that define and characterize the condi- 
tions under which stability of equilib- 
rium exists. Contributions concerned 
with optimization include those in which 
theories and algorithms, formal and 
heuristic, are developed for the purpose 
of selecting from the many stable poli- 
cies one that is optimal. Although max- 
ima and minima are particular exam- 
ples of equilibria in an extended 
framework, I prefer to separate stability 
and optimality for emphasis. Even in 
the field of probability the measures 
used to study problems such as the 
mean and standard deviation are sta- 
bility concepts. Stability is also the ex- 
plicit focal concept of game theory. 
In other areas stability is very impor- 
tant but its role is disguised. In game 
theory, where there are several interests 
that may be in conflict, a resolution re- 
quires that they each be satisfied but 
within the general context, that is, that 
each interest must acknowledge that 
the other interests are entitled to a 
share of the claim. 

Policies in general, stable or unstable, 
are studied in the field of single inter- 
est optimization by examining solutions 
of the constraining set, for example, a 
set of differential equations or inequali- 
ties representing a dynamic system. For 
optimal policies one must find those 
(one or more) policies that yield a maxi- 
mum or a minimum of a given func- 
tion. Because decision processes require 
implementation, the construction of 
stable optimum policies, for example, is 
a pressing task. Algorithms play a signif- 
icant role in this pursuit of construct- 
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ting solutions. Also, it is not surprising 
that algorithms have flourished in the 
general field of optimization, particular- 
ly in the discrete setting of graphs and 
networks. The continuous setting in 
Euclidean space has been illustrated in 
one of its simplest and most elegant 
forms by Tucker (3). 

In this article I discuss algorithms 
as they may be applied to the construc- 
tion of stable policies; game theory as 
a means of analyzing the stability (or 
instability) of conflict, and for analyzing 
optimum policies; and optimization in a 

geometric setting. I use fuzzy sets to il- 
lustrate recent attempts to change some 
of the basic formal concepts in direc- 
tions more suited to the types of appli- 
cations now encountered particularly 
when the human element is included 
in the model. Thus I indicate a variety 
of problems to which operations re- 
search can be applied, rather than 

justify that all operations research con- 

cepts revolve around the fundamental 
idea of stability. 

The Scope of Operations Research 

The two main types of research con- 
ducted by operations research scientists 
are illustrated in Fig. 1. Tool-oriented 
research is concerned with the develop- 
ment of applicable basic mathematical 
tools and may be divided into two areas, 

continuum and discrete mathematics. 
Under continuum mathematics there is 
a triangle whose corners denote three 
fields always in use in operations re- 
search and whose sides indicate inter- 
actions among the three fields. The 
first of these fields is concerned 
with solutions of equations and 
with inequalities that commonly occur, 
particularly as constraints in the field of 
optimization. These equations and in- 
equalities may be algebraic, differential, 
integral, difference, or hybrids of them, 
and are the basic tools in constructing 
descriptive models. Optimization, the 
field in which normative or prescriptive 
models are constructed by selecting 
optimum policies, is central to the use 
of operations research in decision-mak- 
ing (see Fig. 2). Optimization usually 
requires the use of an objective func- 
tion that must be maximized or mini- 
mized subject to constraints. 

In the third field, both descriptive 
and normative models may be deter- 
ministic or probabilistic, the difference 

depending mainly on whether or not the 
parameters of the problem are given 
according to probability distributions. 
Another way in which probability could 
enter a problem is to have an entire 
inequality constraint conditioned to hold 
with prescribed probability. 

For simplicity, I have also divided 
discrete mathematics into three fields. 
The first field, combinatorial mathemat- 

Fig. 2 (facing page). Optimization, an 
outline. [From Saaty, 1970 (2)] 

ics is concerned with arrangements of 
elements into sets and, particularly, with 
the existence of numbers and types of 
certain configurations. Closely related 
to combinatorial theory is graph theory, 
concerned with the study of relations 
between sets. Graph theory has been 
used in a number of applications of 
mathematics to the social and physical 
sciences. In network flow, a graph is 
used as an underlying structure for the 

analysis of such questions as the maxi- 
mum flow of materials from sources to 
sinks in the graph. 

The second field of discrete mathe- 
matics is concerned with optimization 
over discrete sets involving diophantine 
equality and inequality constraints. The 
rapid growth of the field of integer pro- 
gramming with its wide variety of algo- 
rithms has contributed greatly to the 
expansion of this field. Geometric num- 
ber theory is concerned with such prob- 
lems as packing a maximum number of 

prescribed sets into a given set or cov- 

ering a set with a minimum number of 
such sets with every point of the given 
set being covered at least once. As an 

example of the application of covering, 
radar stations may be located so that 

every point 50 miles 1(80 kilometers) up 
or less is under the surveillance of at 
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least one radar set. Applications of this 
field to crystallography are relatively 
well known. 

Operations research could not have 
become established as a scientific disci- 
pline without its practitioners insisting 
on quantification. The philosophy of 
total systems has broadened the bound- 
aries of operations research to the ex- 
tent that parallel mathematical disci- 
plines must now be developed to sup- 
port the new philosophy. Unless there 
is progress in mathematics, operations 
research will encounter difficulties not 
the least of which will be lack of rigor, 
a problem that is common in other sci- 
ences having social applications. By 
rigor I mean the finality and conclusive- 
ness that is inherent in mathematical 
thinking and that guides the way from 

complexity to simplicity and from 

many to few alternatives. Operations 
research needs mathematics if it is to 
survive as a scientific discipline. Disci- 

plined imagination is not enough. On 
the other hand, new mathematics must 
be invented to satisfy the scientific 
needs of operating research. "Theorem 
proving" would be even more valuable 
than "solving." Thus we need more 
characterizing than constructing. 

The most exciting aspect of opera- 
tions research to its practitioners is that 
they are constantly becoming acquaint- 
ed with the details of many disciplines. 
To solve problems, a variety of which 
are shown in Fig. 1, and to obtain solu- 
tions suitable for decision-making, use- 
ful mathematical tools have been de- 

veloped for the areas listed under 

quantitative. However, the solution of 
most problems requires a broad frame- 
work of logic, imagination, and quan- 
tification. Four examples of such quali- 
tative problems are shown in Fig. 1. 

The decision cycle emphasizes the 
fact that in addition to knowing his 

objectives and designing optimal poli- 
cies to attain them, the operations re- 
search scientist is always faced with the 

very strong and relevant issue of im- 

plementation. A theoretical plan may 
be perfectly conceived, but there may 
be no way on earth by which it can be 

put into practice. This is reminiscent of 
the choral movement of Beethoven's 
Ninth Symphony. Presumably, the orig- 
inal version was very difficult if not 

impossible to sing but was close to the 

perfect scheme the composer had in 
mind. Because reality involves people, 
the composer had to compromise his 
structure for the final version which is 
still known for its vocal difficulty. Simi- 
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lar problems occur with idealized solu- 
tions. Very often it is more difficult to 
develop a plan for implementing a 
policy than it is to obtain a mathemati- 
cal solution prescribing the optimal 
policy; even in operations research there 
are people whose esthetic standards 
do not permit a flexible transition from 

optimum policies to reality. 
Various types of mathematical ques- 

tions may be pursued, ranging from 
existence to construction (see Fig. 2). 
There are two general methods of ap- 
proach, geometric and algebraic, and 
the use of each depends on the type of 

problem to be solved. Although many 
problems can be studied by the algebraic 
approach, there are others that cannot 
be completely divorced from their geo- 
metric setting. 

The algebraic approach may be di- 
vided on the basis of problems having 
a single interest (that is, one objective 
function, or several objective functions 
combined in a unified utility framework) 
or having multiple interests involving 
conflict and cooperation. The subdivi- 
sions under single interest optimization 
indicate the various types of constraints 
and objective functions that are related 
to such problems and the mathematical 

approaches to analyzing them. Most of 
these subjects are now being studied 
from the standpoint of functional analy- 
sis in abstract spaces that provides them 
with considerable unity. 

Generally speaking, the field of 
mathematical programming is con- 
cerned with algebraic expressions, the 
calculus of variations with integrals, 
control theory with differential or dif- 
ference types of constraints, and 
stochastic optimization with any of the 

foregoing. All such problems may occur 
under various probability assumptions 
and the object is to obtain a point, or a 
function, as the case may be, which 

yields a maximum or a minimum to the 

objective function and also satisfies the 
constraints. 

Multiple interest optimization is a 

young formal discipline studied primar- 
ily through the theory of games which 
I discuss later in this article. 

Algorithms 

An algorithm is a step-by-step pro- 
cedure consisting of three main stages: 
(i) examination of all possible move- 
ments, (ii) selection of one movement 

according to a set of rules, and (iii) 
decision as to whether to stop or con- 

tinue. The rigorous algorithm must be 
accompanied by a mathematical proof 
of its convergence to the optimal solu- 
tion in a finite number of steps. In 
elementary terms, an algorithm is a 
procedure with well-defined rules fol- 
lowed systematically in order to obtain 
in a finite number of steps the solution 
to a given problem. An algorithm may 
converge to the true optimum solution 
in a reasonable number of steps, a high- 
ly desirable condition, but many prob- 
lems require large numbers of iterations 
to achieve optimality. In such cases the 
cost of continuing the algorithm must 
be compared to the cost of truncating 
the process at a certain point, and thus 
the ability to estimate the error incurred 
by truncation is essential. There are 
also instances when algorithmic proce- 
dures are used to produce not the true 
solution but bounds on the solution. 

In addition, there are problems that 
can be solved by heuristic algorithms, 
but such methods may not permit 
verification of all steps of the analyses. 
Such intuitive algorithms may not be 
ideal, but as initial approaches they can 
lead to iterative processes that are more 
rigorous. In many cases, heuristic al- 
gorithms are the only ones possible in 
difficult situations. 

The importance of a rigorous algo- 
rithm lies in its adaptability to other 
forms; a clearly defined procedure can 
be translated into charts and then into 
programs. A Turing machine was in- 
vented in the 1930's. It is an elegant 
abstraction of the intuitive concepts of 
algorithms. This machine may be said 
to operate on an alphabet, or any other 
set of symbols, and on the possible 
movements of these symbols right and 
left, by defining the actions and move- 
ments associated with each possible 
state of the system. The states are rep- 
resented by boxes in a flow chart of 
an algorithm, and the programs (instruc- 
tions) for each state represent the move- 
ments of the symbols from box to box. 

A search in a labyrinth provides one 
of the simplest examples of an algo- 
rithm. The typical setting for such a 
problem is that of Theseus and his girl 
friend, Ariadne (Fig. 3). Ariadne waits 
for Theseus while he wanders through 
a labyrinth in search of the Minotaur. 
If Theseus is allowed to walk twice over 
every path between two points, he can 
visit every junction of the labyrinth and 
remain entirely ignorant of the plan of 
the labyrinth. This duplication of paths 
is not necessarily the shortest way of 

reaching the Minotaur, but, if per- 
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formed according to plan, the entire 
maze is traversed without Theseus los- 
ing his way. 

With Ariadne at the entrance holding 
the start of a spool of thread, Theseus 
unwinds the thread as he traverses the 
labyrinth. To aid Theseus' memory (al- 
though this is not necessary) a corridor 
that is traveled once (the thread passes 
through it once) is lit with a yellow 
light, traveled twice (the thread has 
been rewound from it) is lit with a red 
light, and untraveled is lit with a green 
light. Thus, Theseus, starting at some 
position or vertex with Ariadne, un- 
winds the thread as he goes along 
green corridors which now turn yellow. 
If, in his meanderings he should revisit 
a junction, he must rewind the thread 
back to the immediately preceding junc- 
tion, and the light in that corridor now 
changes from yellow to red. Note that 
Theseus may arrive at the Ariadne junc- 
tion and not have to consider stopping, 
because the circuit and green corridor 
conditions must be checked first. 

The algorithm is finite because no 
red corridor can be traversed; thus, the 
number of iterations cannot exceed twice 
the number of corridors. Unless he 
reaches the Minotaur, Theseus will stop 
at Ariadne with all corridors red. Every 
other junction is entered through a 
corridor, after which it turns yellow, 
and must be left before that corridor 
turns red. Ariadne's junction behaves 
differently in that when it is left it gen- 
erates a yellow corridor and only when 
Theseus returns to it will it turn red. 
Thus Theseus will be stranded at a junc- 
tion with all corridors red only when 
that junction is Ariadne's. 

If we consider the junctions of the 
labyrinth to be vertices of a graph, and 
constrain them to be equidistant in the 
four directions, we can create a Turing 
machine program equivalent to the algo- 
rithm. By allowing movement in four 
directions and by using an appropriate 
alphabet to describe the conditions of 
the corridors we can program the solu- 
tion. Both the Turing program and the 
conventional form of the algorithm fol- 
low the basic logic according to which 
the possible moves (corridors) are 
examined, one of them is chosen, and 
the subsequent situation is evaluated. 
This procedure can be generalized for 
certain types of algorithms, known as 
branch-and-bound, by defining three 
principles: an evaluation function, a 
separation principle, and a stopping 
rule. The first assigns a value to any 
step of the algorithm; this value usually 
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depends on the availability of a solu- 
tion at that point. The second separates 
the problem into the possible move- 
ments for consideration; this separation 
occurs successively throughout the pro- 
cess until the optimal solution is ob- 
tained. The third states the conditions 
for terminating the algorithm. 

The method of this generalization re- 
mains valid for any iterative process. 
Not only does it relate a large number 
of algorithms by a single framework but 
also serves as a format which provides 
guidelines for creating new algorithms. 
Thus, we have established generalized 
frameworks among iterative problem- 
solving methods, rather than a disjoint 
set of problems and solutions. 

Studies of the following problems 
were initiated by operations research 
scientists and have greatly helped the 
growth of algorithms. Such algorithms 
have directed applied mathematics 
away from calculus and differential 
equations. 

The shortest route algorithm is an 
integral part of another algorithm for a 
network flow. In a network with certain 
capacities and costs, the cost of send- 
ing a commodity from an origin to a 
destination is minimized by sending the 
maximum flow along the least costly 
route. Similarly, the longest route algo- 
rithm solves the PERT (program evalu- 

ation and review techniques) scheduling 
problem, of Polaris submarine construc- 
tion fame. By finding the longest times 
necessary to complete a sequence of 
tasks, manpower and resources can be 
shifted to those tasks that are identified 
as bottlenecks or are found to be 
otherwise restrictive (4). 

The problem of the traveling sales- 
man is widely known in operations re- 
search. The salesman wants to visit his 
clients by covering the shortest total dis- 
tance without repetition. The problem 
can only be solved effectively for the 
salesman wanting to visit a small num- 
ber of cities; for a larger number of 
cities the approach has so far been 
heuristic. 

Stability and Game Theory 

Perhaps one of the most maligned 
and least appreciated fields of operations 
research and mathematics is the theory 
of games. In fact, operations research 
scientists themselves have not fully ap- 
preciated the uses to which can be put 
interpretations of human multiperson 
conflicts by means of game theory. 

Game theory was developed to fill 
a need for structuring and defining 
methods for solving problems in which 
several objectives, representing the goals 

Yes Stop ! 
.. No path to 

Minotaur 

Fig. 3. An example of an algorithm. 
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of various people, must be optimized 
simultaneously. Each of the objectives 
may be subject to different sets of 
constraints if the parties involved do not 
wish to be completely cooperative in 
accepting the joint solution of a straight 
optimization approach. The logic of 
game theory, frequently intricate, per- 
mits a better understanding of the na- 
ture of the problems to be solved. Thus, 
while game theory seeks to be prescrip- 
tive or normative, its contributions to 
problem-solving result from the logical 
approach it employs-not from the 
numbers it uses. There are fair-division 
games, bargaining games, quota games, 
and many other kinds of games. 

The theory leading to the concept 
of a solution for zero-sum two-person 
games, each person having a finite num- 
ber of strategies, was developed by von 
Neumann (5). Such games are abstrac- 
tions of most parlor games. They are 
noncooperative conflicts in which what 
is gained by the winner is completely 
taken from the loser. According to this 
theory, any such game has a pure or a 
mixed strategy solution. A game with 
perfect recall, such as chess or check- 
ers, has a solution in pure strategies- 
that is, there is one best strategy always 
to be pursued, its result can be a win 
or a draw, and that is how these games 
always are. The players know all the 
preceding moves and all moves are a 
result of behavioral choice rather than 
a result of the intervention of chance. 
There are many concepts of solution 
for nonzero-sum games. In fact we still 
need a complete theory of zero-sum 
n-person games where n is greater than 
two. Coalitions play a central role in 
games involving more than two people. 

For' nonzero-sum n-person coopera- 
tive and noncooperative games with a 
finite number of strategies a general 
theory was started by Nash (6). The 
idea of stable equilibrium plays a cen- 
tral role in this theory. A stable solu- 
tion for a noncooperative game is a 
payoff, and its corresponding strategies 
are such that, if all players but one 
adhere to their strategies and one of 
them attempts to play some other strat- 
egy, he cannot improve his own pay- 
off. Although Nash's theory encoun- 
tered some dilemmas, it continues to be 
one of the simplest and most readily 
acceptable definitions of what might 
constitute a solution for certain prob- 
lems encountered in real life. 

A number of other concepts of solu- 
tion have been examined. Among these 
is the idea that an index may be used to 
measure the power that an individual 
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can exert in obtaining a win in a coali- 
tion which he might join. In a bargain- 
ing situation the players, by a mixture 
of threats and cooperative proposals, 
attempt to convey to each other how 
they think stability would be achieved. 
Offers, counteroffers, and compromises 
usually lead to a resolution that is 
stable for a limited period of time. 

Game Theory and Arms Control 

A very simple illustration of the appli- 
cation of a game matrix to a bargaining 
situation in which the information 
possessed is incomplete is a game por- 
traying the escalation of arms through 
MIRV's (multiple independently tar- 
geted reentry vehicles). As a possible 
arms control measure a few years ago, 
the United States hoped that the Soviet 
Union would not develop MIRV's. The 
payoff matrix for such a situation might 
have the form shown in Fig. 4. In each 
pair of numbers the first number in- 
dicates payoff to the United States and 
the second to the Soviet Union. The 
conclusion is that there are situations in 
which an opponent cannot be guided 
at all by what one party says because, 
regardless of what is said, it may be 
in the opponent's interest to do the op- 
posite. For the opponent to do what has 
been requested it is more important to 
supply the opponent with greater factual 
information about what the situation 
really is than to continue an argument. 

Figure 4 shows that to avoid a -4, 
the United States, if it has MIRV's, 
might try to convince the Soviet Union 
that it does not have them. However, it 
would be better for the Soviet Union to 
have them because then they would get 
-4 instead of -5. If, on the other hand, 
the United States has no MIRV's, it 
might try to convince the Soviet Union 
not to have them; otherwise, the United 
States would get -5 instead of 0. But, 
in that case, it would still be better for 
the Soviet Union to have them because 
then they would get 1 instead of 0. 
Thus, nothing that the United States 
tells the Soviet Union should influence 
the Soviet Union's judgment about 
MIRV's because, given this payoff 
matrix, it is better for them to have 
MIRV's no matter what is said. The 
decision must be based on other in- 
formation; for example, some inspec- 
tion scheme by both sides to ensure 
that neither side has them. Of course, 
we know from the newspapers that both 
sides know how to make MIRV's and 
may even be mass producing them. 

A Coalition Game 

As a second illustration consider the 
following coalition game. Seven peo- 
ple are divided into two groups, a 
group of five and a group of two. Some 
subset of the two groups must form a 
coalition and bargain the division of a 
given sum of money. If the coalition 
can stay together without being broken 
up by a member not in this coalition, 
then the game is terminated and the 
money is distributed among the mem- 
bers of the coalition according to how 
they bargained this division. Not all 
coalitions are allowed. An admissible 
coalition could be any one of the fol- 
lowing nine. The group of two members 
with at least one and up to possibly all 
members of the group of five. This 
makes five coalitions. Then one mem- 
ber of the group of two with three, 
four, or five members of the other group 
can form a coalition. Finally the entire 
group of five can form one coalition. 
Thus in all there are nine coalitions. 
The problem is to devise a method of 
settlement that takes into consideration 
the bargaining power of each individual 
to form a coalition. That there is such 
an index of measurement was demon- 
strated by Shapley (7) who allocated 
each individual a part of the total sum 
of money depending on his "voting" 
power to form a winning coalition. In 
real-life bargaining, personality plays an 
important role which as yet cannot be 
included in the mathematics. In practice 
one encounters such bargaining games 
frequently and any familiarity with the 
mathematics makes it easier to under- 
stand them. By participating in such 
games the players learn to appreciate 
the difference between the power they 
have as part of the structure of the 
game and the power they have as be- 
havioral members of a bargaining pro- 
cess. 

Preferences and Sanctions 

The following application of game 
theory has been used frequently in the 
field of arms control and disarmament 
and, more recently, in the analysis of 
the subway-highway debate in Wash- 
ington, D.C. It has also been used in 
an attempt to make an analysis of the 
Middle East crisis. The approach is 
based on Nash's concept of solution 
(6, 8). 

What each of the participants pre- 
fers among the several possible out- 
comes must be known. Often an out- 
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come may be described by listing the 
actions (called options) available to each 
party and then stating whether that 

party takes or does not take the action 
for the outcome considered. If neces- 

sary, each option can be subdivided in- 
to more options. Thus the stability of 
the outcomes is tested on the basis of 
informed judgment on the preferences 
of each of the parties. 

An outcome is potentially stable for 
a particular player (participant) if any 
action he might take to improve his 

position can be responded to by a sanc- 
tion wielded by the other players-this 
being a joint action such that, whatever 
the particular player does, he will be in 
a position less preferable to him than 
the initial outcome. A potentially stable 
outcome will be actually stable for a 

player if he finds it credible (that is, if 
he does, in fact, believe) that a sanc- 
tion would be applied if he moved away 
to a preferred position. 

Finally, an outcome as a whole is 
stable if and only if it is stable for 
each individual player. Using this defini- 
tion, the investigator proceeds by first 

listing the options available to each 

player as described above. Then he 
starts his analysis by selecting what ap- 
pears to be a possibly stable outcome 
and examining it from the viewpoint of 
each player in turn to decide whether 
it is stable for this particular player. 
First he lists all possible unilateral 
changes this player can bring about and 
decides whether or not each would lead 
to a preferred outcome. If there exist 
any which would lead this player to a 

preferred outcome, the investigator ex- 
amines all possible sanctions the others 
could use against such a move and de- 
cides whether each sanction would yield 
only "not-preferred" outcomes. 

An outcome can also be examined 
from the viewpoint of coalitions of in- 
dividual parties. A coalition (that is, a 
particular subset of parties) is defined as 
preferring one outcome to another if 
and only if each coalition member has 
such a preference. The definition is de- 
signed to enable us to examine how 
groups of players can jointly reach pre- 
ferred outcomes by joint action. 

The technique assigns options to each 
player, and the analysis based on these 
options may not lead to any outcome 
that is acceptable to all the parties. To 
overcome this difficulty in a way that 
conforms to real situations, the same 
problem, with a larger number of 
options, may be examined to see if 
concessions could be made to the oppos- 
ing party in order to reach a com- 
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Soviet Union 

United No MIRV 
States MIRV M IRV 

No MIRV MIRV 

0, 0 -5, +1 

+1, -5 -4, -4 

Fig. 4. Application of game theory to a 
bargaining situation (MIRV, multiple in- 
dependently targeted reentry vehicles). 

promise on the outcome desired by the 
others. This is a method of embedding 
a negotiation problem in a larger one. 
With regard to conflicts that arise in the 
field of planning, these additional con- 
cession-options may be of a kind which 
require action at a future date. Thus, it 
may be that action is needed for some 
kind of development in the not-too- 
distant future that was being sought by 
one of the parties, while this same party 
objected to an urgent measure the re- 
maining parties wanted. Then these 
parties might attempt to get a conces- 
sion from the defector by offering him 
one of the outcomes for the future in 
which his interests are better served, 
thereby enlarging the scope of the 
game. 

Attrition-Attack Differential 

Game Model 

Suppose that two nations, the United 
States and Vietnam, are engaged in a 
protracted war and have supplies of 
vital weapons at time t amounting to x1 
and x,, respectively. Each nation can 
at any time choose to allocate its re- 
sources between "attrition," that is, de- 
pleting its enemy's rate of weapons 
supply, and "attack," that is, entering 
them in the major conflict. The ac- 
cumulation of any excess weapons in 
attacks will ultimately decide the victor. 
Thus, the basic decisions are between 
the long-range policy of attrition and 
the short-range policy of direct attack 
(9). 

Suppose the United States at time t 
split its force xl into the attacking 
component (1 - a)x, and that of attri- 
tion ax, where 0 L a l 1. Also, sup- 
pose that Vietnam, unimpeded, has the 
capacity to obtain weapons (by manu- 
facturing them or obtaining them from 
allied nations) at the rate m2 and loses 
them at a rate depending on the num- 
ber ax, its enemy devotes to that pur- 
pose. Then 

X2 = m> - c2(axi) 

defenses. (Here dots over a variable 
indicate that its derivative is taken 
with respect to time.) A similar equa- 
tion holds for x1: 

t = in, - ci(3px2) O fi- B 1 

If the war is to last some definite 
time, T, then the payoff, V, in terms of 
accumulated marginal superiority will 
be: 

T 

V =f [( - p)x- (1 -a)x,]dt 
0 o 

Here, T acts as a state variable with 
T--1 

If the partial differentials of V with 
respect to x1, x2, and T are denoted by 
V1, V2, and VT, respectively, the opti- 
mal strategy is determined by: 

min max [(mi - c1 fix2) V1 + 
a /3 

( m, - C2cXl) V2 - VT + 

(1 - p)x- (1 - a)x] 0 

If the further condition that x1, x2 
0 is imposed, we can rewrite the ex- 

pression in the brackets as 

SxI,c + S2x. - + 
ml V +- m2V:- 

VT + X2 - X1= O 

where 

S = 1 - c2V2, S =- 1 --c1Vi 

and 

O_ i0 if S1 > 0 
a ifS 

I if S, < 0 1 if S2> 0 

If we consider time in reverse (r = 
constant - t) and differentiate, we find 

xl' = - ml + ci p X2 

X2' = -- m2 + C2 Ca Xl 

T'= 1 

V, = Sa - 1 

V2' = S2 p + 1 

where x' represents Ox/Tr. 
To obtain the optimal strategies we 

complete the initial conditions. 
Along the terminal surface p, V = 

V = V2 = 0 and, hence, S, = 1 and 
so a = 0; S --1 and so 0 = 0. 
Thus the war concludes with both sides 
fully attacking. 

Integrating the above equations for 
the optimal strategies using the initial 
conditions we get 

X1 = S -m r V = - r 

x2 = S2 -- m 2 V2 = r 

O al'=a 1 

where co is a measure of effectiveness of 
the U.S. weapons against Vietnam's 

and, with these strategies, 

S = 1 - c2 S = - ?1 - c r 
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Type 2 

Fig. 5 (left). The "parallel domain" for a house base, used for determining the 
maximum number of houses that can be fitted into a given area. Fig. 6 (right). 
The three main types of hexagon that indicate the minimum areas that would be oc- 
cupied by houses designated to satisfy minimum separation conditions. 

which first become nonpositive when 
T 1/c2 and 1/cl. Since it is assumed 
that c1 > c2, r =l/cl occurs first retro- 

gressively. Thus at a time l/cl short of 
the end of the war, Vietnam switches 
from full attrition to full attack. 

Further Examples of 

Operations Research Contributions 

I will now give an example of how 

operations research models can lead to 
useful mathematical results. 

The constraints of a linear program- 
ming problem define a convex set that 
is polyhedral in shape but may not be 

compact. The main idea is that the opti- 
mum of a linear program is on the 

boundary of this polyhedron and gen- 
erally at a vertex. The simplex process, 
perhaps one of the most used algo- 
rithms for solving linear programming 
problems, enables one to move from one 
vertex to an adjacent one toward the 

optimum. The time it takes to solve 
the problem depends on the number of 
vertices. The number of vertices that a 
convex polyhedron can have cannot 
exceed the following binomial co- 
efficient that is a sharp bound (that is, 
it is sometimes attainable): 

2 [2] 
n(^-m- 

n+2 Fit-, 2t,,- - 

where V is the number of vertices, n is 
the dimension of the space, and F,,_1 
is the number of hyperplanes of dimen- 
sion n - 1. (Brackets indicate the near- 
est integer.) 

It is in the application context that 

operations research pushed forward the 
solution to this mathematically signifi- 

1068 

cant problem. It took about 20 years to 
obtain the result and to rigorously prove 
it. 

Interesting applications of network 

analysis are discussed in the July 1970 
issue of Scientific American (JO). Op- 
timum design, reliability, and the vul- 
nerability of networks are all important 
concepts. 

As an example of operations research 

applied to network analysis (10), I will 
describe the gas pipelines network from 
wells in the Mexican gulf to central 

storage stations at Pollock, Louisiana. A 

typical gas field may require a network 
that connects 25 wellheads; such a net- 
work may cost $100 million. The prob- 
lem is to select a set of pipe diameters 
that minimize both the sum of invest- 
ment and the operating costs that in- 
clude the high cost of compressing the 

gas for delivery. The main trunk should 
be large enough to accommodate the 
additional flow that might result from 
the discovery of more wells, yet if it is 
built too large for today's needs and 

requires a large investment, it may turn 
out that the gas productivity from 

existing wells subsequently decreases 
and no new gas wells are found. There 
are seven prescribed pipe diameter sizes 
that may be used. With 25 branches 
and one main trunk there would be 726 

possible networks to choose from, a 

figure which defies computer capability. 
A "branch exchange" method has there- 
fore been developed to select an eco- 

nomically good network. By this method 
a new branch is substituted for an old 
one and the flow throughout the net- 
work is recomputed to see if the cost 
has improved. The computations are re- 

peated to explore new branches at all 
nodes of the tree. A number of im- 

proved network designs are in opera- 
tion that would have cost millions of 
dollars more had they not been sub- 

jected to this analysis. 

Geometric Approach 

The following examples of optimiza- 
tion are based on the geometry of the 
problem to be solved and treated ac- 
cording to the theory of The Geometry 
of Numbers created by the mathemati- 
cian, Hermann Minkowski, during the 
early part of this century (11). 

There are many problems in real life 
that involve both geometric regularities 
and irregularities and it is sometimes 
difficult to decide on the best approach 
to their solution (12). To solve the 
problem of parking cars, for example, 
the same method may be used as that 
for solving the barrel-barrel problem, 
but allowance must be made for the 
turning angles of cars. 

Let us consider the following ques- 
tions. Given a large rectangular area, 
what is the maximum number of con- 
gruent unit circles or wine barrels 
(small relative to the total area) that 
can be packed in it so that any barrel 
can be moved without disturbing any 
of the others? How must they be ar- 
ranged? We find that the barrels must 
be arranged in offset and touching 
double rows separated by corridors wide 
enough to move the barrels out. The 
density of this packing is 

2 

barrels per unit area. 
A similar problem is encountered in 

the design of housing estates. As many 
rectangular houses as possible must be 
built on a large area and minimum 
separation conditions must be satisfied. 
We may take this minimum distance to 
be two units and scale the dimensions 
of the rectangular base to be a and b 
with a <b, b = 1. 

We may create a "parallel domain" 
for the house base, as shown in Fig. 5, 
by drawing a boundary to contain all 

points of distance m 1 from a point of 
the rectangle, inside the boundary. The 

problem then becomes one of finding 
the most efficient way to pack these 
sites into the given area (13). 

For the initial calculations, a square 
base of side 2x is used for the house. 
Three main types of hexagon emerge as 

significant when a variety of possible 
hexagons are considered. When the 
areas of these hexagons have been de- 
termined the geometrical restrictions on 
x with repect to a make it possible to 
determine the arrangement of the hexa- 

gons that permit optimum use of the 

given area. The areas of these hexagons 
may be compared with respect to the 
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value of x within the permissible ranges. 
Depending on which of the following 
relations holds: 2x 4 --/12, 4 -x/12 
< 2x < 2- V2, or 2x - 2 - /2, hexa- 
gons of types 1, 2, and 3, respectively, 
give the minimum areas (see Fig. 6). 

The results may then be applied to 
rectangular bases, as it can be shown 
that a hexagon which is minimal for a 
square of side 2x is also minimal when 
the square is "stretched" to give a rec- 
tangle of shorter side a = 2x (the hexa- 
gon is stretched along with the square). 
Thus hexagons of types 1, 2, and 3 will 
be minimal according as a - 4 --/12, 
4- /12 <a < 2 - 2, and a 2 - 
/2, respectively. 

Fuzzy Sets 

In many fields of science, problems 
having an element of uncertainty and 
imprecision are conventionally treated 
according to the concepts and methods 
of probability theory. However, there 
are also situations in which the impreci- 
sion stems not from randomness but 
from the presence of a class or classes 
(that is, fuzzy sets) that do not possess 
sharply defined boundaries. Thus there 
are no precisely defined transitions that 
make these sets members or nonmem- 
bers of a class. 

Such complex and ill-defined systems 
pervade the life and social sciences and 
are also found in the physical sciences 
where systems may be too complex to 
admit of analysis by conventional math- 
ematical means. In general, the com- 
plexity of the system may increase to 
the point where it becomes impractical 
or infeasible to make precise statements 
about it. At that point, any meaningful 
assertion about the system must neces- 
sarily be fuzzy in nature. 

The classes encountered in these situa- 
tions are fuzzy in the sense that they 
do not possess sharply defined bound- 
aries. In the case of a class with a fuzzy 
boundary, an object may have a grade 
of membership in it which lies some- 
where between full membership and 
nonmembership. Zadeh called such a 
class a fuzzy set (14). Let X = {x} 
denote a set of points. A fuzzy set A in 
X is a set of ordered pairs: 

A = {[x, /A (X)]},X e X 

where /A,(x) is termed the grade of 
membership of x in A. If PA (x) takes 
on values in a space M-the member- 
ship space-then A is essentially a func- 
tion from X to M. The function jA : X 
-> M which defines A is called the 
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x 

Fig. 7. Intersection and union of fuzzy 
sets. 

membership function of A. When M 
contains only two points, 0 and 1, A 
becomes an ordinary set. 

Some elementary properties of fuzzy 
sets which are obvious extensions of the 
corresponding properties of ordinary 
sets may be defined as follows: 

Containment. Let A and B be two 
fuzzy sets in X. Then A is contained in 
B (or, equivalently, A is a subset of B, 
or A is smaller than or equal to B) if 
and only if, for all x in X, AiL(x) pB(x). 

Equality. Two fuzzy sets are equal, 
A = B, if and only if /xA = yB. 

Complementation. A fuzzy set A' is 
the complement of a fuzzy set A if and 
only if AA' = 1 - AA. 

Union. The union of A and B, de- 
noted by A u B, is the smallest fuzzy 
set containing both A and B. The mem- 
bership function of A U B is 

/LAUR = max(#A, /AB) 

Intersection. The intersection of A 
and B is denoted by A n B and is de- 
fined as the largest fuzzy set contained 
in both A and B. The membership func- 
tion of A nB is given by 

/lAnB = min(AA, LB) 

The intersection and union of fuzzy 
sets in R1 are illustrated in Fig. 7. The 
membership function of the union is 
comprised of curve segments 1 and 2; 
that of the intersection is comprised of 
segments 3 and 4. 

Algebraic product. The algebraic 
product of A and B is denoted by AB 
and is defined by 

IIAB = /LA/AB 

Algebraic sum. The algebraic sum of 
A and B is denoted by A E B and is 
defined by 

ILA(DB = /LA + /1B -- /LA/B 

Relation. A fuzzy relation, R, in the 
product space X XY = {(x,y)}, xeX, 
yeY, is a fuzzy set in X X Y character- 
ized by a membership function /R 
which associates with each ordered pair 
(x,y) a grade of membership /x,(x,y) e 
R. More generally, an n - ary fuzzy 
relation in a product space X = X1 X 
X2 X . . .X Xn is a fuzzy set in X 

characterized by an n - ary member- 
ship function 

/R(x1,... ,Xn), xi e X', i = 1,... n 

Composition of relations. If R1 and 
R2 are two fuzzy relations in X2, then 
by the composition of R1 and R2 we 
mean a fuzzy relation in X2, denoted 
by R1 * R2 and defined by 

R-i.R (x,y) = sup min [R1(x,v), R2(v,y)] 
v 

where the supremum is taken over all 
v in X. 

Fuzzy sets induced by mapping. Let 
/ = X -> Y be a mapping from X to Y, 
with the image of X under f denoted 
by y = f(x). Let A be a fuzzy set in X. 
Then, the mapping f induces a fuzzy 
set B in y whose membership function 
is given by 

fB (y) = sup p(A(x) 
e f-l(y) 

where f-1(y) denotes the set of points 
in X which are mapped by f into y. 

Shadow of a fuzzy set. Let A be a 
fuzzy set in X X Y, and let f denote 
the mapping which takes (x,y) into x. 
The fuzzy set in X which is induced by 
this mapping is called the shadow 
(projection) of A on X and is denoted 
by S,(A). The membership function 
of SM(A) is given by 

IMsv(A) (X) = sup 8A (x,y) 

where / A(x,y) is the membership func- 
tion of A. 

Conditional fuzzy sets. A fuzzy set 
B(x) in Y is said to be conditioned on 
X if its membership function depends 
on x as a parameter. Denote the mem- 
bership function of B(x) as B'(y//X). If 
the parameter X ranges over a space X, 
the 'function IuB(y/X) defines a mapping 
from X to the space of fuzzy sets 
defined on Y. Then, a fuzzy set A in 
X induces a fuzzy set B in Y which is 
defined by 

ILB(y) = sup min [LA(X), IB(y/X)] 
xeX 

The concept of a conditional fuzzy 
set is similar to the concept of a condi- 
tional probability distribution. Note 
that the definition of AB(Y) is similar 
to the conditional probability identity 

PB(y) =f pB(y/x)pA(x) dx 
aX 

In many instances, the operations of 
summation and integration involving 
probabilities correspond to the opera- 
tions of taking the supremum (or maxi- 
mum) of membership functions; multi- 
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plication of probabilities corresponds to 

taking the infimum (or minimum) of 

membership functions. 
The theory of fuzzy sets is still in 

a state of theoretical development. Be- 
cause of the many real-life situations to 
which fuzzy set theory seems to be 
relevant, there has been worldwide in- 
terest in it and also some criticism of it. 

Conclusions 

The discussion of fuzzy sets indicates 
that set theory should be extended to 
make it more suitable for the develop- 
ment of algebraic structures with wider 

applications. Stochastic optimization, a 
synthesis of the three areas of con- 
tinuum mathematics, is a rapidly grow- 
ing field particularly in the context of 
control theory. Applications of discrete 
mathematics have found a rich outlet in 

graph theory, particularly in the social 
sciences. However, there remains a 
wide gap between the sophisticated ac- 
tivities that are required for the de- 
velopment of optimum policies and the 
more difficult and intractable problems 
of organizational structures and per- 
formance. 

The state of mathematics at present 
does not permit the development of 
general models by which the physical 
and economic aspects of a problem can 
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graph theory, particularly in the social 
sciences. However, there remains a 
wide gap between the sophisticated ac- 
tivities that are required for the de- 
velopment of optimum policies and the 
more difficult and intractable problems 
of organizational structures and per- 
formance. 

The state of mathematics at present 
does not permit the development of 
general models by which the physical 
and economic aspects of a problem can 

be related to their social implications. 
So far, the total systems approach re- 

quires that the problem be partitioned 
with each partition being modeled 

separately; imagination and logic must 
then be used to combine the solutions 
so that they apply to the original prob- 
lem. The social sciences are making 
rapid progress along various lines of 

quantification but significant mathemati- 
cal theories that can be applied in this 
field have yet to be found. 

Because of its undefined boundaries, 
operations research provides unlimited 

opportunities for pioneering work in 
mathematics. Operations research ex- 
tends the roots of mathematics into the 
real world. 
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AMA: Specialty Journals 
Must Lure Paying Subscribers 
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AMA: Specialty Journals 
Must Lure Paying Subscribers 

The American Medical Association 

(AMA) is trying to save money. A 

drop in dues-paying members (dues 
are $110 a year) and rising costs have 
forced the AMA, which everyone pre- 
sumed to have unlimited wealth, to 
take stock of its resources. In the last 
2 years, the organization has gone in 
the red to the tune of more than $3.8 
million. This sizable deficit for a pre- 
sumably flush outfit has lead many ob- 
servers to the conclusion that the AMA 
is going broke. That isn't really true. 
But the AMA has set about trimming 
what it sees as the fat out of its opera- 
tion in an attempt to make the future 

fiscally black. 
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Apparently the AMA realized as 
many as 4 years ago that a bit of fiscal 
restraint might be in order, inasmuch 
as its House of Delegates adopted a 
resolution calling for cost-cutting in 
June 1968. The first clear evidence 
that that resolution was taking effect 
came late last month, when the AMA 
met in Cincinnati. 

The house, which is the governing 
body of the association, approved two 
actions proposed by the board of 
trustees to pare expenses. The first will 

put an end to the long-standing practice 
of allowing AMA members a free sub- 

scription to one specialty journal, in 
addition to the Journal of the American 
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put an end to the long-standing practice 
of allowing AMA members a free sub- 

scription to one specialty journal, in 
addition to the Journal of the American 

Medical Association (JAMA), and 
raises questions about the future of those 
journals. The second calls for the elimi- 
nation of some of the AMA's councils 
and standing committees, whose cost 
apparently was not deemed justified by 
their productivity. Together, these 
actions will save an estimated $840,000. 

Ever since 1909, when it began 
publishing the Archives of Internal 
Medicine, the AMA has been in the 
business of publishing specialty jour- 
nals. Today it puts out ten (Table 1), 
with a combined circulation of about 
180,000. Designed from the beginning 
to be academic journals, they have 
been untouched by the political turmoils 
that beset the organization, and they 
seem proud of that independence. 
Qualitatively, they vary but generally 
seem to be considered acceptable. As 
one specialty journal editor phrased it, 
"Actually, they are all very good 
journals, though each is not necessarily 
the top journal in its field." Three of 
them make money: American Journal 
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