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cently reported that ingestion of cheno- 
deoxycholic acid causes gallstone dis- 
solution in some patients. These investi- 
gations showed that, in women with 
cholelithiasis, chenodeoxycholic acid 
causes bile to become unsaturated with 
respect to cholesterol. They suggested, 
however, that stone dissolution might be 
limited by the kinetics of dissolution, 
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since duodenal bile samples obtained 
after gallbladder contraction were sig- 
nificantly undersaturated with respect to 
cholesterol. 

A great deal of research over the past 
few years has emphasized the role of 
lecithin in increasing cholesterol solubil- 
ity in bile mediums (1, 3). Yet little is 
known of the influence of lecithin on 
the kinetics of cholesterol dissolution. 

The purpose of this report is to pre- 
sent in vitro findings that show the 
existence of an important rate-determin- 
ing interfacial barrier for dissolution of 
cholesterol monohydrate in bile acid- 
lecithin mediums. Lecithin shows a 
strong inhibitory effect on the rate of 
cholesterol dissolution in cholate or 
taurocholate mediums. This effect was 
quantitatively evaluated in terms of an 
effective permeability coefficient of 
around 1.5 X 10-5 cm sec-1 for the 
interfacial barrier. 

The primary process of dissolution 
involves the disengagement and trans- 
port of molecules from the crystal sur- 
face into the bulk solution. Equation 1 
was derived to express the rate of dis- 
solution J as a function of the diffusion 
coefficient D, the solubility Cs, the bulk 
concentration C,, and the surface area 
A for a solid, when both an interfacial 
barrier with an effective permeability co- 
efficient P and a Nernst diffusion layer 
(4) of thickness h are important (5). 
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Either of the transport barriers may be 
rate-determining for the process. When 
the interfacial resistance 1/P is negligi- 
ble compared to the diffusional resist- 
ance h/D, the dissolution rate is dif- 
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Table 1. Dissolution rates J of the solute measured in solvent mediums at 37?C, with solubilities C, and diffusion coefficients D independently determined (6)*, and values for hID and (h/D + 1/P) calculated according to Eq. 1. 

Solute Solvent J/A >< 1010 C, X 106 D X 106 (h/D) 10-3 (h/D + 1/P)10-s medium (mole cm-2 sec-1) (mole ml-1) (cm2 sec-1) (sec cm-1) (sec cm-1) 
Cholesterol 0.0371M 0.43 0.30 2.15* 2.33 7.0 

monohydrate taurocholate 
(pH 7.4) 

Cholesterol 0.0371M 0.185 1.26 1.24 4.03 67.7 
monohydrate taurocholate - 

0.0133M 
lecithin 
(pH 7.4) 

Cholesterol 0.0464M 1.66 1.31 2.17 2.30 7.8 
monohydrate cholate 

(pH 8.0) 
Cholesterol 0.0464M 0.43 2.60 1.49 3.36 60.4 

monohydrate cholate + 
0.0133M 
lecithin 
(pH 8.0) 

Cholesterol 0.116M 4.82 3.31 1.90 2.63 6.8 
monohydrate cholate 

(pH 8.0) 
Benzoic acid 0.01N HC1 1072.0 38.5 14.0 0.36 0.36 
* Diffusion coefficient of 2.0 X 10-6 cm2 sec-I for 20 to 100 mM taurocholate loaded with cholesterol was reported by F. P. Woodford (15). 
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Cholesterol Dissolution Rate in Micellar Bile Acid 

Solutions: Retarding Effect of Added Lecithin 

Abstract. In vitro studies on the dissolution rate of cholesterol monohydrate 
crystals in micellar bile acid solutions showed that the addition of lecithin 
decreases the dissolution rate even though lecithin increases the equilibrium 
solubility of cholesterol in these solutions. The reduction in rates caused by leci- 
thin was attributed to a large crystal-solution interfacial barrier. An effective 
permeability coefficient for the interfacial barrier was calculated to be around 
1.5 X 10-5 centimeter per second for the transport of cholesterol molecules. 
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fusion-controlled, and this is the situa- 
tion usually applicable to most systems. 
When 1/P is much greater than h/D, 
the dissolution rate is interfacially 
controlled. In order to establish ,the 
inhibitory effect of lecithin upon 
cholesterol monohydrate dissolution in 
cholate or taurocholate solutions, the 
dissolution rates, diffusion coefficients, 
and solubilities of cholesterol were 
determined independently in the me- 
diums (6) (see Table 1). By Eq. 1, 
values for (h/D + 1/P) were calculated 
by use of the measured JIA, Cs, and D. 
The magnitude of h was determined 
from the benzoic acid dissolution rate 
in 0.01N HC1, for which the rate was 
established to be diffusion-controlled 
(7). As shown in Table 1, (hID + 1/P) 
values about 'three times larger than 
h/D were found (8) for the dissolution 
of cholesterol monohydrate in tauro- 
cholate and cholate solutions not con- 
taining lecithin. However, when lecithin 
was present, values for (h/D + 1/P) 
that were almost 18 times (9) larger 
than those for h/D were found. These 
results are in accord with an effective 
permeabililty coefficient P for the cho- 
lesterol interfacial transport of around 
1.5 x 10-5 cm sec-1. Lecithin effects 
of about the same magnitude have been 
observed for the dissolution 'of human 
gallstones in bile acid-lecithin mediums 
(10). 

A similar lecithin effect has been ob- 
served in studies (11) of the transport 
of cholesterol from aqueous bile acid- 
lecithin solutions into hexadecane. It 
was found that the sterol transport is 
interfacially controlled, and the presence 
of lecithin markedly reduced the inter- 
facial permeability coefficient. Oil-to- 
aqueous permeability coefficient values 
of around 10-7 cm sec-1 were found 
with taurocholate-lecithin mediums of 
the same composition as those shown in 
Table 1. Considering the fact that the 
area term in Eq. 1 is not the true area 
or microscopic surface area for choles- 
terol crystal dissolution, the real differ- 
ence between the crystal-solution trans- 
port rates and the oil-aqueous transport 
rates of sterols should be somewhat 
smaller (12). 

As demonstrated in this report, large 
interfacial barriers may be present dur- 
ing the dissolution of cholesterol mono- 
hydrate crystals in lecithin-bile acid 
solutions (13). These barriers are of 
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such magnitude that they may be im- 
portant in dissolution of cholesterol 
gallstones in vivo. Thus, the presence 
of such barriers may explain why the 
rates of gallstone dissolution in vivo 
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observed by Danzinger et al. (2) are 
lower than those predicted by diffusion- 
controlled dissolution models (14), and 
the counteracting or the elimination of 
these barriers by appropriate measures 
may constitute a clinically significant 
goal. 
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translational processes as the site of 
the basic oscillator (1). This line of 
reasoning has culminated in the 
"Chronon" concept (2), which postu- 
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Gas Exchange in Dry Seeds: Circadian Rhythmicity in the 

Absence of DNA Replication, Transcription, and Translation 

Abstract. A 24-hour rhythm of gas exchange has been detected in dry onion 
seeds. The rhythm persists in constant conditions, and its period appears to be 

independent of temperature. Since DNA replication, transcription, and perhaps 
translation do not occur in this quiescent state, it is concluded that the basic 

oscillation that defines circadian rhythmicity does not derive directly from these 

processes. 
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