
By analogy with an enzyme, the rate 
of turnover, or the turnover number of 
a carrier, may be defined by the follow- 
ing fictitious experiment. Consider a 
lipid membrane which separates two 
aqueous phases and which contains a 
fixed number, N, of carrier molecules. 
The solution on the left side contains 
ions of concentration c1, which are 
transported by the carrier; the ion con- 
centration in the solution on the right 
side is assumed to be zero. If the aque- 
ous phases are electrically short-cir- 
cuited, a carrier-mediated ion flux of 
magnitude l) occurs through the mem- 
brane. At low ion concentration c.,x, the 
flux increases linearly with c-.. At high 
concentrations, however, the carrier be- 
comes gradually saturated, and ,I finally 
approaches a maximal value q11ax (in a 
similar manner an enzyme-catalyzed re- 
action approaches a maximal rate in 
the limit of high substrate concentra- 
tion). The turnover number / is then 
defined as the maximum number of ions 
which may be transported per second 
by a single carrier molecule: 

f - _N (12) 

This theory leads to the following 
simple expression for the turnover num- 
ber: 
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With the above values of the rate 
constants, one finds /f 104 sec-1, 
which means that a single valinomycin 
molecule is able to transport 104 K+ 
ions per second across the membrane. 
This number is much higher than the 
turnover number of most enzymes. 

Thus, we may state that valinomycin 
has a surprisingly low affinity for K+ 
in the heterogeneous system membrane- 
water. In spite of this low affinity, vali- 
nomycin is an effective ion carrier; 
obviously, the reason is the high turn- 
over number of the molecule. 
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One of the comforts of investigating 
the work of Pierre de Fermat (1601- 
1665), one of the very few comforts, 
lies in not having to explain to non- 
historians of science who he was. Any- 
one who has studied mathematics re- 
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members, at least vaguely, the legend 
connected with the name Fermat, the 
famous "last theorem." "Wasn't he the 
man who didn't have room in the mar- 
gin of some book for a proof he had, 
a proof which no one since has been 
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famous "last theorem." "Wasn't he the 
man who didn't have room in the mar- 
gin of some book for a proof he had, 
a proof which no one since has been 

able to find?" "Yes," runs the answer, 
"that's the one." To be more precise, 
in the margin of his copy of Claude 
Bachet de Meziriac's 1621 edition of 
Diophantus of Alexandria's Arithme- 
tica, next to Proposition 11,8 (To 
split a square into two squares), Fer- 
mat wrote (1, p. 291): 

But one cannot split a cube into two 
cubes, nor a quadratoquadrate [that is, 
fourth power] into two quadratoquadrates, 
nor in general any power in irtfinitum 
beyond the square into two like powers. 
I have uncovered a marvelous demon- 
stration indeed of this, but the narrow- 
ness of the margin will not contain it. 

That is, Fermat claimed he had found 
a proof of the theorem that the equation 
X11 + yn = Zn has no rational solution 
for integer n greater than 2, but did 
not have room to set it down. Appar- 
ently he did not set it down elsewhere, 
nor has anyone since been able to prove 
the theorem: not Euler, nor Gauss, nor 
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Kummer, to mention just a few who 
have tried (2, 3). 

On hearing this account, the dra- 
matically inclined listener may think 
of the kingdom lost for want of a 
horseshoe nail: For want of a wider 
margin, a proof was lost, and so on. 
Despite the legend's dramatic appeal, 
however, more is wrong with it than 
merely that Bachet's edition of Di- 
ophantus had extremely wide margins, 
wide enough for Fermat to insert 
at other points marginalia up to 17 
times as long as the one just cited, or 
that a professional lawyer and prom- 
inent member of the Parlement of Tou- 
louse was unlikely to run out of writing 
paper. As in the case of Galileo, the 
simplicity of the legend masks the com- 
plexity of the real, historical character. 
Fermat was no novice blessed with a 
flash of insight while dabbling in Di- 
ophantus. He was a well-read number 
theorist and mathematician who thought 
long, hard, and carefully about his 
work. If, to the detriment of posterity, 
he kept much of his mathematics in his 
head, he nonetheless did commit some 
of it to paper. 

Indeed, what Fermat wrote down in 
mathematics conforms to a distinct 
pattern, which reflects not only the ex- 
ternal style of his work, but also its in- 
ternal content. A study of that pattern, 
especially in the realm of number 
theory, yields a twofold reward: It 
reveals a very likely candidate for the 
proof Fermat had in mind when he 
made his tantalizing promise in the 
margin of Diophantus' Arithmetica, 
and it suggests why he did not set 
down the proof itself. To see that pat- 
tern, however, even in outline, one must 
make something of a survey of Fermat's 
entire career to discover what sort of 
mathematician he was (4). 

Mathematical Career 

Underlying Fermat's mathematical 
career as a whole is a fundamental ten- 
sion that often led to paradoxical be- 
havior. Fermat was a bold and inge- 
nious problem-solver who at the same 
time strove toward, and prided himself 
on, the full generality of his methods 
of solution. Almost all of his major 
achievements had their roots in a con- 
crete solution to a concrete problem. 
His analytic geometry, for example, 

which he invented simultaneously with, 
and independently of, Descartes, 
stemmed from a restoration of Apol- 
lonius' lost work, Plane Loci, in par- 
ticular from Proposition II,5 of that 
work. His research on quadrature, 
which established some of the funda- 
mental techniques of definite integra- 
tion, had its origins in the specific prob- 
lem of determining the area under each 
turn of the "Galilean" spiral, p2 = kO. 
In each case, Fermat worked outward 
from the specific problem by articulat- 
ing its solution into a general method 
of solution for a general class of prob- 
lems. To justify the generalization, 
however, he tended to rely more on his 
intuitive sense of its efficacy than on 
theoretical demonstration of its validity. 
The development of his famous meth- 
od of maxima and minima illustrates 
this tendency rather well. 

Sometime in the late 1620's, Fermat 
was trying to find an algebraic deriva- 
tion of Proposition VII,61 of Pappus 
of Alexandria's Mathematical Collec- 
tion. That proposition, a lemma to 
Apollonius' lost work, On Determinate 
Section, involved the determination of 
a minimum value, and Fermat was 
perplexed by Pappus' remark that that 
minimum value was "singular" (5). 
Analyzed algebraically, the original geo- 
metrical problem reduced to an intri- 
cate quadratic expression, and it 
occurred to Fermat that Pappus might 
have meant that, for the minimum value 
of the expression, the equation ob- 
tained by setting the expression equal 
to that value has only one root. Fer- 
mat knew, however, from his study of 
Frangois Viete's algebraic theory of 
equations that quadratic equations al- 
ways have two roots (6). The apparent 
contradiction prompted him to take a 
simpler problem and examine it closely. 

Turning to Euclid's Elements, he in- 
vestigated (7) a special form of the 
problem to which Proposition VI,27 
provides the answer: to divide a given 
line segment into two parts such that 
their product is a maximum, or, in al- 
gebraic terms, to find the maximum 
value of x(b - x), where b is the 
length of the given line segment and x 
the length of one of its parts. It was 
not the solution x = b/2 that interested 
him, but rather the equation x(b - x)= 
b2/4 that resulted from setting the ex- 
pression equal to its maximum value. 
By Fermat's interpretation of Pappus, 
that equation should have only one 
root, and the standard solution proce- 
dures of the time showed that it, in 
fact, did (8). 

Fermat was worried, however, about 
the missing second root. To find it, he 
altered the equation somewhat: What 
if x(b - x) were set equal to some 
value c less than b2/4? Finding that 
the resulting equation contained the ex- 
pected two roots, Fermat then took 
values of c closer and closer to b2/4 
and noticed that the difference of the 
two roots steadily decreased until, at 
the maximum value of c, that is, at 
b2/4, -the difference was zero. Hence, 
he reasoned, the second root does not 
disappear; it is simply equal to the first 
root. And then came the bold step: to 
find the maximum or minimum value 
of an expression, one must find the 
value which, when set equal to the ex- 
pression, yields an equation having a 
repeated root. That repeated root will 
be the value of the unknown for which 
the expression attains the extreme value. 

Viete's theory of equations provided 
Fermat with the technical means to 
turn this general insight into a concrete 
procedure. Consider the equation 
bx-X2 - c, where c is some value 
less than b2/4. That equation has two 
roots, which we may call x and y, 
whence the following pair of relations 
obtains: 

bx - x2 c 

by - y" c 

Subtracting, we obtain b(x- y)--(x2- 
y') - 0; dividing through by the 
'(nonzero) difference x - y of the roots, 
we obtain the final relation b = x + y. 
At first glance, the last equation reveals 
no more than that the sum of the roots 
of the original equation is equal to b, 
the coefficient of the x term; indeed, 
the purpose of Viete's method was in 
part to derive what are now called the 
"elementary symmetric functions" of 
an algebraic equation. In Fermat's 
hands, however, the equation became 
the gateway to a method of maxima 
and minima. He reasoned that the final 
relation giving the sum of the roots 
holds generally for the given equation, 
whatever the particular value of c. 
Hence, it holds also for the maximum 
value of c. But for that value the dif- 
ference of the roots is zero; that is, 
x = y, or b = 2x. 

Next, to shorten computation, Fer- 
mat replaced x and y as the two roots 
by x and x + y, where y now became 
the difference of the roots. And, hav- 
ing succeeded with a few elementary 
quadratic problems, including the orig- 
inal problem from Pappus' Mathemat- 
ical Collection, he extended the method 
generally (9): Given a polynomial 
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P(x), imagine it equal to some value 
M, not an extreme value. If P(x) is of 
the second degree or greater, there will 
be at least two roots, x and x + y, for 
which P(x) = M and P(x + y) = M. 
Hence P(x + y) - P(x) = O. Each of 
the terms on the left-hand side will 
contain y or some power of y, so divide 
through by y, that is, compute 

P(x - y) - P(x) 
y 

This equation expresses the relation- 

ship between the coefficients of the 

original equation P(x) =M and two 
of its roots. That relationship, Fermat 
maintained, is independent of the 
value of M. Hence, it holds also for 
an extreme value of M, in which case 
the two roots are equal, or their dif- 
ference is zero. To find, then, the value 
for x such that M is an extreme value, 
just set y= 0. 

That is Fermat's method of maxima 
and minima, in which one finds at least 
the operational origin of the modern 
method for differentiation of an alge- 
braic polynomial. Two aspects of it de- 
serve emphasis. First, Fermat's concept 
of the method involves neither infini- 
tesimals nor limits. Second, and more 

important for present purposes, its 
final form is the result of a bold and 

largely unjustified leap from a special 
case to a fully general assertion. In the 

special case, if a is the argument for 
which a quadratic Ax2 + Bx + C is 
maximized or minimized, then the 

equation Ax2 + Bx + C = Aa2 + Ba + 
C reduces to the form (x - a)2 = 0. 
Fermat's final method rests on the far 
broader claim that, if P(x) is any 
polynomial and P(a) an extreme value 
of it, then the equation P(x) - P(a) 

0= reduces to the form (x - a)2R(x) 
=0 (10). 

Problem Solving and 

Theorem Proving 

The development of ideas exempli- 
fied here is typical for Fermat. He 
finds a procedure for solving a particu- 
lar problem and then generalizes that 
procedure as far as he can, often 
farther than logic would dictate. This 

path from concrete problem to general 
method often produced a brilliant in- 
vestigation in the style of Viete's 
theory of equations: determination of 
solution families through techniques of 
reduction to canonical form (that is, 
the concrete problem), modification of 
procedures to allow wider application, 
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classification of problems according to 
means of solution, and so on. In the 
realm of maxima and minima, the in- 
vestigation culminated in the successful 
extension of the derived method of 
tangents to nonalgebraic curves (11). 
In the realm of quadrature, it ultimately 
yielded the exquisite reduction analysis 
of part 2 of the "Treatise on Quadra- 
ture" (1658) where, among other 
things, Fermat established criteria for 
distinguishing algebraically quadrable 
curves from those of which the quad- 
rature depends on the quadrature of 
the circle (12). 

But that approach to mathematics 
had its drawbacks. It made Fermat in- 
sensitive to the subtle exigencies of 
rigorous theorem-proving. Success in 

problem-solving gave him a confidence 
that frequently blinded him to the pesty 
counterexample. It meant that he at 
times lost track of the conceptual foun- 
dations of his own work. Nothing 
illustrates this better than his elegant 
attempt to justify the method of 
maxima and minima in a letter to 
Pierre Brulart de St.-Martin in 1643 

(13). That proof, which (like all of 
Fermat's discussions of the method) 
employs only finite differences, falters 
on his failure to distinguish between 
local and global extreme values. 

Fermat begins the proof by noting 
that the uniqueness of an extreme 
value, say a maximum, for a given 
argument implies that, for arguments 
either greater or less than the given 
one, the value of the polynomial will 
be less than the extreme. That is, if 

P(a) represents the maximum value of 
a polynomial P(x), then for any y, 
P(a) is greater than P(a ? y). Expand- 
ing P(a ? y) into the form P(a) ? yPl(a) 
+ y2P2(a) ? ... ? (-y)"Pn(a), where n 
is the degree of the polynomial, Fermat 
then reasons as follows: For the in- 

equality to hold for any nonzero y, first 

Pl(a) must be zero and second P2(a) 
must be less than zero (for a minimum, 
it would have to be greater than zero). 
The first condition corresponds to the 
method of maxima and minima, the 
second (also original with Fermat) to 
what is now called the second-deriva- 
tive criterion of an extreme value. On 
that much, Fermat is clear. When, how- 
ever, he begins to muse over the re- 
maining terms, he becomes vague. He 
takes a few stabs at explaining them 
away, but ultimately Brulart must take 
Fermat's word for it that everything will 
come out right; the remaining terms 
will take care of themselves. 

The modern reader may spot the 

flaw in this proof and the reason why, 
without further conditions placed on 
y, those remaining terms cannot be 
ignored. Fermat has failed to distinguish 
between local and global extreme 
values. To vitiate the proof, one need 
only take a fourth-degree expression 
with two local maxima (or two local 
minima) and choose a value for y that 
makes a ? y the argument for the 
second extreme value. Also, y must be 
taken as arbitrarily small: One can al- 
ways find an expression with two local 
extremes of the same sort within an 
arbitrarily small interval. 

But Fermat cannot be expected to 
have distinguished what he did not see, 
and Fermat literally never saw multiple 
extreme values. He thought in terms 
not of general polynomials (to that 
extent, the symbolic presentation above 
is unfair to him), but of concrete ex- 
amples. And all of the concrete prob- 
lems to which he applied his method 
of maxima and minima had but one 
extreme value that made sense in terms 
of the problem. That is, he was apply- 
ing his method to geometric construc- 
tions, and in each case the analysis 
resulted in a single value greater than 
zero (14). Thus, the vitiating counter- 
examples that spring out at the modern 
reader (used as he is to thinking about 
general polynomials) from Fermat's 
proof lay unnoticed by him. For they 
are theoretical, rather than practical, 
counterexamples; they undermine the 
rigor of Fermat's demonstration, not 
the validity of his procedures in ob- 
taining correct answers. The algebraic 
polynomials include few, if any, mon- 
sters (15). 

"I am content," Fermat wrote to 
Father Marin Mersenne in 1636 (16, 
p. 14), "to have discovered the truth 
and to know the means of proving it 
whenever I shall have the leisure to 
do so." Lack of leisure remained Fer- 
mat's standard excuse for failing to 

provide proofs of his results throughout 
his career. It says more about him than 
that he was a busy man. As a problem- 
solver, Fermat neither liked rigorous 
proofs nor was very good at establish- 
ing them. He knew when he had the 
right answer and an effective means 
of arriving at it. He measured the gen- 
erality of his procedures by his success 
at solving problems with them, and 
the sense (gained from experience) that 

they would always work, or could al- 

ways be made to work, supplanted any 
felt need on his part for detailed theo- 
retical justification. One sees evidence 
of this at every turn in his work. In- 
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deed, the "experienced analyst" was 
frequently the man to whom Fermat 
referred difficulties: "The experienced 
analyst will know what to do" (17). 

Number Theory 

One sees this especially in Fermat's 
number theory. There most notably, 
his persistent failure to make good his 
promise of providing proofs he claimed 
to possess exasperated his contempo- 
raries as it has frustrated historians. 
There his problem-solving approach to 
mathematics is most pronounced. Spe- 
cific problems, usually in the form of 
challenges to others (Brulart, Bernard 
Frenicle, and John Wallis in particular), 
constituted Fermat's main vehicle of 
research and exposition. So, in 1640, in 
the midst of several stunning results 
regarding perfect and multiply perfect 
numbers (18), Frenicle learned that 
the basis of Fermat's method of solu- 
tion is the following theorem (here 
paraphrased for clarity's sake) (16, p. 
209): Given a prime p and a sequence 
of numbers at - 1 (t positive) based on 
any positive integer a, then p divides 
some least member of the sequence, say 
aT - 1, and T divides p - 1; further, p 
then also divides all subsequent mem- 
bers a^7' - 1 of the sequence. There it 
is, a slightly stronger version of what 
is today known as Fermat's Theorem: 
For p prime and a prime to p, aP-1 
-- 1 (modulus p). But there is no hint 
of a proof, no trace of a derivation; 
Fermat offered only a long series of 
multiply perfect numbers generated on 
the basis of the theorem. 

Then the subject of Fermat's and 
Fernicle's correspondence changed to 
a complex of intricate problems involv- 
ing right triangles in numbers (19). 
Only through the foresight of Father 
Jacques de Billy (20), who added to 
the 1670 edition of Diophantus' Arith- 
metica (published with Fermat's mar- 
ginalia) the treatise "Doctrinae analy- 
ticae inventum novum," culled from 
letters sent him by Fermat, do we now 
have an advantage over Frenicle and 
Brulart in knowing how Fermat was 
solving seemingly impossible problems, 
such as: Find a right triangle in num- 
bers such that the square of the differ- 
ence of the two smaller sides exceeds 
twice the square of the smallest side 
by a square number (the answer is 
1525, 1517, 156). We share his cor- 
respondents' quandary, however, when 
it comes to theorems such as: Every 
prime number of the form 4k + 1 is 
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uniquely the sum of two squares. In 
1657, Fermat issued two challenges to 
European mathematicians at large. The 
second of these asked for the solution 
in integers of the equation x2 = py2 + 
I for any nonsquare p (21). Fermat 
claimed to possess a general solution, 
but the reader of his works searches in 
vain for the slightest hint of it. One can 
guess that it looked something like 
Euler's (22, chapter 7), but it is only 
a guess. And so it goes. Those are only 
the outstanding examples, and the list 
could be lengthened almost at will. 
Fermat's writings on number theory 
abound with specific solutions to spe- 
cific problems; his silence concerning 
his methods is deafening. The vaunted 
proofs are nowhere to be found. 

Close investigation of Fermalt indicates 
that this silence was the norm for him, 
that the contradiction between his be- 
havior in analysis and his behavior in 
number theory is only apparent. If Fer- 
mat wrote down proofs of his results in 
analysis, it is because those proofs were 
dragged from him by his correspond- 
ents. He had, for example, to provide 
justification for the method of maxima 
and minima and of tangents, if only to 
defend himself against Descartes' 
charges of being nothing more than 
lucky (23). He did not put his system 
of quadrature down in writing until 
the appearance of John Wallis' Arith- 
metica infinitorum in 1656 threatened 
his priority and independence. Had he 
been able to maintain his status as a 
brilliant problem-solver without re- 
vealing his methods he would have 
done so. His number theory shows that, 
for there Fermat had no competitors 
to threaten his predominance; on the 
contrary, he could evoke little interest 
in the subject among most of his con- 
temporaries (24). In that situation, he 
could operate as he chose, revealing 
nothing more than he wished. Hence, 
the main characteristic underlying many 
of his memoirs comes to the fore in his 
number-theoretical jottings. For they 
are just that: jottings to jog the 
memory. Fermat wrote down only 
what he needed to remind himself, not 
of what he did so much as how he 
did it. 

Method of Infinite Descent 

Thus one can explain the disappoint- 
ing character of Fermat's "Relation de 
nouvelles decouvertes en la science des 
nombres," written to Pierre de Carcavi 
for transmission to Christian Huygens 

in 1659 (16, pp. 431-436). Despite the 
promise of the title, it relates very little 
about Fermat's number theory. For 
example, Fermat described what he 
called the "method of infinite descent" 
(addressed to the problem of a right 
triangle with a square area) (16, pp. 
431-432): 

If there were any integral right triangle 
that had an area equal to a square, there 
would be another triangle less than that 
one which would have the same property. 
If there were a second less than the first 
which had the same property, there 
would by similar reasoning be a third less 
than the second which would have the 
same property, and then a fourth, a fifth, 
etc., descending ad infinitum. Now it is 
the case that, given a number, there are 
not infinitely many numbers less than that 
one in descending order (I mean always 
to speak of integers). Whence one con- 
cludes that it is therefore impossible that 
there be any right triangle of which the 
area is a square. ... I do not add the 
reasoning by which I infer that, if there 
were a right triangle of that nature, there 
would be another of the same nature less 
than the first, because the argument 
would be too long and because that is 
the whole mystery of my method. I will 
be content if the Pascals and the Rober- 
vals and so many other learned men 
search for it according to my indications. 

Although the "whole mystery" can 
be unraveled in this instance, Fermat 
went on to relate that he had long been 
perplexed by how to apply this proof 
technique to affirmative propositions 
such as: All primes of the form 4k + 
1 split uniquely into two squares. He 
was, in his own words (16, pp. 431- 
432), "in a pretty fix." But then, "oft- 
repeated meditation gave me the in- 
sight I lacked, and affirmative questions 
passed under the aegis of my method 
with the aid of some new principles it 
was necessary to add to it." As Fermat 
described it in general terms, the trick 
lay in showing that, if some prime of 
the form 4k + 1 does not split uniquely 
into two squares, then some smaller 
prime of the same form also does not, 
and then one smaller than the second, 
and so on down to the smallest, 5, 
which is, however, composed of 22 and 
12. Hence, by contradiction, the original 
assumption is disproved. The details of 
the trick, however, the precise steps by 
which one reduces a given prime of 
the form 4k + 1 not composed of two 
squares to a smaller prime of the same 
form also not so constituted, remained 
Fermat's secret. 

In Observation 45 of his "Observa- 
tions on Diophantus," Fermat lifted the 
wraps on the "mystery" of his method 
far enough to permit a reconstruction 
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of the full details of his proof concern- 

ing right triangles with square areas. 
He wrote (1, pp. 340-341): 

If the area of a triangle were a square, 
there would be given two quadratoquad- 
rates of which the difference were a 
square. Whence it follows that two 
squares would be given, of which the 
sum and the difference would be squares. 
And thus a number composed of a 
square and the double of a square would 
be given equal to a square, under the 
condition that the squares composing it 
make a square. But if a square number 
is composed of a square and the double 
of another square, its root is similarly 
composed of a square and the double 
of a square, as we can most easily dem- 
onstrate. Whence one concludes that 
this root is the sum of the sides about 
the right angle of a right triangle, and 
that one of the squares composing it con- 
stitutes the base and the double square 
is equal to the perpendicular. 

Hence, this right triangle is composed 
of two squares of which the sum and 
difference are squares. But these two 
squares will be proved to be smaller 
than the first squares initially posited, of 
which the sum and difference also made 
squares. Therefore, if two squares are 
given, of which the sum and the differ- 
ence are squares, there exists in integers 
the sum of two squares of the same na- 
ture, less than the former. 

By the same argument there will be 
given in the prior manner another one 
less than this, and smaller numbers will 
be found indefinitely having the same 
property. Which is impossible, because, 
given any integer, one cannot give an 
infinite number of integers less than it. 

Narrowness of space prevents insert- 
ing in the margin the whole demonstra- 
tion explained in detail. By this argu- 
ment we have recognized and confirmed 
by demonstration that no triangular num- 
ber except unity is equal to a quadrato- 
quadrate. 

Expressed algebraically, and with 
some missing steps supplied, Fermat's 

argument reduces to the following: 
Let the pair p,q of mutually prime 
integers be the generator of a right 
triangle; that is, let p2 + q2 be the 

hypotenuse, p2 - q2 and 2pq the sides. 
Assume that the area pq(p2 - q2) of 
the triangle is some square a2. Since 

p and q are mutually prime, so too are 

pq and p2 - q2; if their product is a 

square, each of them must also be a 

square. By the same reasoning, if pq = 

b2, then p = d2 and q = f2. Hence, p2 
? q=c2 

-- d4 - f4 = (d2 + f2) (d2 - 

/2). But the factors of this last product 
are mutually prime, whence d2 + f2 = 
g2 and d - f2= h2, or d2 = h2 + f2 
and g2 = h2 + 2/2. By the theorem 
Fermat cited concerning quadratic 
forms (25), g must be of the form 
k2 + 2m2. On the one hand, then, 
g2 = (k2 + 2m2)2 = (k2 2m2)2 + 

34 

2(2km)2 = h2 + 2/2, whence/2 = 4k'm2. 
On the other hand, g2 = (k2 + 2m2)2 
= k4 + 4m4 + 4k2m2 = d2 + /2, 
whence d2 = k4 + 4m4. But then d is 
the hypotenuse of a right triangle with 
sides k2 and 2m2 and with the square 
area k2m2; like the first triangle, the 
new one must have a generator of the 
form u2, v2. But, since d2 = p, clearly 
d < p < p2 < p2 + q2, the hypotenuse 
of the original triangle. Hence, by a 

fully general argument, which can be 
repeated indefinitely, the assumption of 
a right triangle in numbers which has 
a square area entails an infinitely de- 
scending sequence of integers (the 
hypotenuses of the triangles), which is 

impossible in the domain of integers. 
Hence, the assumption is disproved. 

In his various descriptions of the 
method of infinite descent, Fermat did 
not call special attention to an impor- 
tant application he had made of it. 
He asked in Observation 33 (1, p. 327), 
"But why not seek two quadratoquad- 
rates of which the sum is a square?," 
and then he answered his own query, 
"Because this problem is impossible, 
as our method of demonstration can 
establish without a doubt." Although 
he said no more, one can fill in the 

missing proof by analogy to the proof 
just presented. 

Suppose a2 = b4 + c4 =(b2)2 + (c2)2. 
Then a, b2, c2 constitute a right triangle 
generated by some mutually prime pair 
of integers p,q, where b2 = 2pq and 
c p2 q2 Clearly, q 2r (26), 
whence b2 = 4pr, or (b/2)2 = pr. Since 

p and q are mutually prime, so too are 

?p and r, whence p = d2 and r =f2. 

Hence, c2 = d - 4f/4 = (d2 + 2/2) (d2 
- 2f2), and it can quickly be shown 
that the factors of the last product are 

mutually prime. Therefore, d2 + 2/2 = 

g2 and d2- 2f2 = h2, or d2 h2+ 2/2 
and g2= h2+ 4/2=- h2+ (2/)2, Now 
it follows from Fermat's theorem con- 

cerning primes of the form 4k + 1 
that, if g2 is the sum of two squares, 
then g must also be of the form k + 
m2. On the one hand, then, g2 =(k2 + 

m2)2 (k2 - t2)2 + (2km)2 =h2 + 
(2f)2, whence / = km. On the other 

hand, g'2= (k2 + m2)2= k4+ m4 + 
2k2m2 = d2 + 2f2, whence d2 - k4 + 
m4. But then d2 represents another 

square expressible as the sum of two 
fourth powers, and, since d2 = p is less 
than p2 + q2 = a, clearly d2 is less than 
a2. Again the reduction procedure is 

fully general and hence entails an in- 

finitely descending sequence of integers. 
Therefore, there exists no pair of fourth 

powers of which the sum is a square. A 

fortiori, there exists no pair of fourth 
powers of which the sum is a fourth 

power, since all fourth powers are 
squares. But the last statement is Fer- 
mat's "last theorem" for the case n = 4. 

Last Theorem 

Is the method of infinite descent what 
Fermat had in mind when he spoke 
in Observation 2 (1), the famous "last 
theorem," of his "marvelous demon- 
stration" that "one cannot split a cube 
into two cubes . . . "? The close simi- 
larity of the two proofs just presented 
suggests strongly that this is the case. 
In his "Relation" to Carcavi and Huy- 
gens, Fermat counted the impossibility 
of a rational solution of x: + y3 = z' 

among the theorems proved by infinite 
descent. Indeed, whenever Fermat men- 
tioned the two least cases of his "last 
theorem" (that is, cubes and fourth 

powers) he did so in connection with 
the theorem concerning triangles with 

square areas; the proofs given above 
show why. Moreover, the same "nar- 
rowness of the margin" (marginis exi- 
guitas) that prevented him in Observa- 
tion 2 from carrying out his marvelous 
demonstration also prevented him in 
Observation 45 from filling in all the 
details of the proof outlined there, a 

proof (to repeat) intimately linked to 
the proof of the "last theorem" for 
the case n = 4. 

Fermat stated the "last theorem" in 
full generality only once, in Observa- 
tion 2, but he cited the cases of cubes 
and fourth powers repeatedly in his 

correspondence. It would seem, there- 
fore, most probable that his success in 

proving these two cases led him to as- 
sume that the method of infinite descent 
would work for all cases, and to make 
the assumption without carrying out 
all the details. It would not have been 
the first time that he made a (possibly 
mistaken) conjecture on the basis of 
not attending to details. For, in the 
"Relation," he informed Carcavi that 
the method of infinite descent had led 
to the proof of a theorem that he had 
been struggling with for years, to wit, 
that all square powers of 2 increased 
by I are prime, that is, 22"1 + 1 is prime 
for all n. He added, apropos of the 

proof by infinite descent (24): 

This last problem results from a very 
subtle and very ingenious research and, 
even though it is conceived affirmatively, 
it is negative, since to say that a num- 
ber is prime is to say that it cannot be 
divided by any number. 
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Clearly, the subtlety and ingenuity of 
Fermat's proof lay more in his faith 
in the applicability of his method than 
in having actually carried out the ap- 
plication in full. As Euler showed in 
1732 (27), 22- + 1 is divisible by 641. 
And, strikingly, just as the prime num- 
ber conjecture breaks down for n = 5, 
so too the demonstration by infinite de- 
scent of the "last theorem" makes a 

quantum jump in difficulty for n 5; 
for n t 23, the method fails altogether 
(28). 

The quantum jump in difficulty just 
referred to applies to the technical and 

conceptual apparatus one finds, on the 
one hand, in Fermat's proof for n= 4 
and Euler's proof for n = 3 and, on the 
other, in Legendre's proof for n = 5. 
The crux of Fermat's proof is the 
theorem that, if a square number is 
the sum of two squares, so too is its 
root; that of Euler's, a similar assertion 
about squares of the form p2+ 3q2 
(29). But, by the same token, Fermat's 

proof concerning triangles with square 
areas turns on the assertion (26) that 
"if a square number is composed of 
a square and the doulble of another 

square, its root is similarly composed of 
a square and the double of a square." 
That assertion, Fermat claimed, "we 
can most easily demonstrate." But how? 
All three of these theorems can be 
demonstrated in any rigorous way only 
by the use of complex quadratic fields 
(even Euler ran afoul of this), and 
Fermat never wrote down or conceived 
of a complex number in his life. Rather, 
it seems clear that he had something 
else in mind. 

The theorem about squares that are 
the sum of two squares must also have 
underlain any proof Fermat had for 
the uniqueness of the decomposition 
of a prime of the form 4k + 1 into 
two squares. Investigations he carried 
out regarding the decomposition of 
powers and products of such primes 
also involved claims of uniqueness, and 
they rested on Fermat's belief that the 
identity (k2 + n2)2 = (k2 - m2)2 + 
(2km)2 represented the only way to 
decompose (k2 + m2)2 into two squares 
(3,0). Hence, it seems more than likely 
that the "easy demonstration" of the 
theorem about squares and double 
squares derived from no more than the 
unproved uniqueness of the identity 
(p2 + 2q2)2 = (p2 - 2q2)2 + 2(2pq)2. 
That is, Fermat avoided quadratic fields 
by the unjustified use of algebraic iden- 
tities. This is possible in cases n = 3 
and n 4 of the "last theorem" but 
would not seem to be true for cases 
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n ' 5, for which resort to quadratic 
fields is (practically at least) unavoid- 
able. 

Hence, I am now convinced that, 
having proved his theorem for n = 3 
and n = 4 (the only two cases he men- 
tions more than once), Fermat left 
off, confident that the same method of 

proof, combined with the ingenuity he 
knew was his own, could be applied 
in all cases. In short, there was no 

proof that would not fit into the margin; 
rather, there was a proof schema that 
had not been thoroughly tested and in 
fact had only limited application. 

Although the "last theorem" almost 

certainly was not in fact Fermat's last 
theorem in number theory, it may well 
serve that purpose here. It sums up 
Fermat's career, both in number theory 
and in mathematics as a whole. It is 
shrouded in mystery because Fermat 
could not or would not find the time 
to record his "proof" for posterity, or 
even for himself. The "proof" probably 
was no proof, because Fermat could 
not be bothered with detailed demon- 
strations of theorems his superb mathe- 
matical intuition told him were true. 
The theorem probably is true because 
that intuition seldom erred. And Fer- 
mat's contributions to number theory, 
unlike his work in other fields, never 

slipped into obscurity, because the "last 
theorem," together with many others, 
was a true theorem lacking a proof. 
No mathematician can resist that! 
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18. A perfect number is a number equal to the 
sum of its proper divisors, including 1, as 
6 -3 + 2 + 1. A multiply perfect number is 
one that is equal to an integral submultiple 
of its proper divisors, as 672 is one-half the 
sum of its proper divisors, including 1. 

19. A right triangle in numbers is a triple of 
numbers, a,b,c, satisfying the relationship 
a2 = b 2 + c2. 

20. Billy was a Jesuit priest and close friend of 
Fermat's in Toulouse. As a teacher of mathe- 
matics at several Jesuit colleges in France, 
Billy was amcng the first to introduce the new 
developments in analysis into the classroom. 

21. For the details of this famous challenge, see: 
Mahoney (4) and J. E. Hofmann, "Neues 
iber Fermat's zahlentheoretische Herausfor- 
derungen von 1657," Abh. Preuss. Akad. Wiss. 
Math. Naturwiss. Kl. (No. 9) (1944). 

22. L. Euler, Vollstindiige Anleitung zur Algebra 
(St. Petersburg, 1770); revised edition, J. E. 
Hofmann, Ed. (Stuttgart, 1959); in Leonhardi 
Euleri opera oninia (Leipzig-Berlin, 1911), 
vol. 1, ser. 1. See part 2, section 2. 

23. For about a year between the summers of 
1637 and 1638, Fermat and Descartes clashed 
bitterly over Descartes' theory of refraction 
and Fermat's method of tangents. Fermat 
ultimately won the mathematical point, and 
Descartes afterward retaliated by trying to 
ruin Fermat's reputation among the Parisian 
mathematicians. Fermat had to compose the 
the proof for Brulart in 1643 because Des- 
cartes seemed to be succeeding all too well 
(4). 

24. Fermat's inability to interest others in his new 
results in number theory was the greatest dis- 
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appointment of his career; it explains in part 
the fervor behind the challenge problems of 
1657 (4). 

25. Quadratic forms are numbers of the form 
a2 + mb2, where m is a nonsquare integer, 
and a and b integers. 

26. Since we assume the relation a2 - b' + c4 to 
be in reduced form (that is, that the terms 
contain no common factor), h2 and c2' can- 
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not be both even. Since, in turn, b2 = 2pq, 
one of p or q must be even, the other odd. 
Were q odd, c2 = p'2 - q2- 1 (modulus 4), 
which is impossible. Therefore, q is even. 

27. L. Euler, "Observationes de theoremate quo- 
dam Fermatiano, aliisque ad numeros primos 
spectantibus," Comment. Acad, Sti. Imp. 
Petropolitanae 6, 103 (1733). 

28. See J. Itard's introduction to the 1966 re- 
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print of Nogues' Theor'nme de Fermat (2, 
p. iv). 

29. For Euler's proof, see (22, paragraph 243); 
for his theory of quadratic forms, see (22, 
chapter 12). 

30. A form of this identity is the basis for 
Diophantus' solution of Proposition 11,8 of 
the Arithmetica, the proposition that prompted 
Fermat's statement of the "last theorem." 
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After World War II, the availability 
of federal funds for biomedical re- 
search and hospital construction en- 
couraged a particular growth pattern 
for the American medical school. First 
came a basic sciences building; next, 
a clinical sciences teaching and research 
facility, often combined with or closely 
followed by a big university hospital. 
Frequently, the cycle would be re- 
peated, with the university medical 
center expanding to monumental pro- 
portions. 

In the late 1960's, however, medical 
schools began to suffer the financial 
pinch caused by the Vietnam war and 
inflation. Keynesian logic led federal 
agencies to make their deepest cuts in 
construction funds, and the effects, 
consequently, were felt most sharply 
by new medical schools or those in 
the midst of building programs. 

The new syndrome was nowhere 
more inopportune than at Michigan 
State University (MSU), which operates 
two new medical schools, one of them 
the College of Osteopathic Medicine. 
While the MSU schools have the ad- 
vantage over private schools of receiv- 
ing state support, they have had to con- 
tend with a restive state legislature. The 
state is committed to supporting four 
state medical schools, but the legislature 
has developed something of an immune 
reaction to the costly prospect of sup- 
porting major university medical centers 
at three campuses (Science, 22 Septem- 
ber). The legislators' constituents have 
been complaining about the shortage 
of physicians in many areas and the 
high cost of medical care, and the 
legislators have grown increasingly 
skeptical about the likelihood that the 
medical centers will turn out the re- 
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cruits for general practice and com- 
munity medicine they think are needed. 

The appropriations committees of the 
legislature have used their considerable 
practical influence to increase class size 
at all state medical schools and to 
encourage an emphasis on family and 
community medicine. At MSU, the 
legislators had more leverage than at 
the University of Michigan or Wayne 
State, simply because the new schools 
had to be built literally from the ground 
up. 

It would be a distortion to say that 
the Michigan legislature dictated the 
terms under which the two schools 
would operate. The medical schools 
themselves initiated the innovations at 
MSU which resulted in the extensive 
use of community facilities for clinical 
teaching and the unusual departmental 
arrangements for teaching in the basic 
sciences. And the university at large 
has a special adaptability that made it 
possible for innovations to take root. 
(The organization of medical education 
at MSU will be discussed in another 
article.) To ignore the influence of the 
legislature, however, would be highly 
unrealistic, 'and that influence is re- 
flected most clearly in the medical 
school buildings constructed, and par- 
ticularly those not constructed, on the 
MSU campus. 

The first building specifically designed 
and built for medical education at 
MSU is Life Sciences I, which was 
completed in 1971. The building cost 
a,bout $9.5 million, with some $4 mil- 
lion of that provided by the state. Life 
Sciences I was built on a site designated 
for a medical complex. The site is 
located near the edge of MSU's expan- 
sive main campus, with easy access to 
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interstate roads and virtually unlimited 
room to build. 

Life Sciences I was planned at a 
time when MSU had only a 2-year 
medical school. Like many a medical 
school building elsewhere, it reflects 
the patchwork financing by which 
medical schools put facilities for a 
number of programs under one fed- 
erally subsidized roof. The building 
accommodates the school of nursing, 
the pharmacology department, the 
offices of the dean of the College 
of Veterinary Medicine, and labora- 
tories and animal facilities. Archi- 
tecturally, it is not viewed as a very 
flexible building. 

Actually, the prospects of medical 
education on the campus were taken 
into account when building plans were 
made for the past 10 years. A bio- 
chemistry building, completed in the 
mid-1960's, includes facilities for in- 
struction of medical students, and a 
new veterinary clinic incorporates space 
suitable for instruction and research 
in both human and animal surgery. 
Both facilities are near-by the stan- 
dards of MSU's wide-open spaces-Life 
Sciences I. 

But authorization by the legislature 
of a 4-year program in human medicine 
in 1969 and the decision a year later 
to move the College of Osteopaithic 
Medicine to the East Lansing campus 
presented the university with a greatly 
increased demand for space. Two build- 
ings have undergone major renovation. 
Giltner Hall, an academic building, 
now houses the departments of anato- 
my, microbiology, pathology, and physi- 
ology, as well as animal facilities. 
MSU's gifts for improvisation were 
more clearly demonstrated in the reno- 
vation of a residence hall for the use 
of both medical schools. In recent 
years, student life-styles have changed 
in such a way that many prefer sharing 
apartments off campus to traditional 
dormitory living. As a result, the uni- 
versity was left with empty rooms in 
the residence halls and a problem in 
paying off dormitory mortgages. One 
reaction to this situation at MSU was 
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