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magnetic axiality in lanthanide com- 
plexes cannot be assumed in general, 
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fluent from fission power reactors (1). 
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rial (DNA), present several practical 
and theoretical problems (1). Tritium 
in the form of [3H]water is a waste 

product from fission power reactors, 
and 3H-labeled nucleosides, particularly 
[3H]thymidine ([3H]dT), have abundant 
use in studies of normal and malignant 
cell proliferation (1, 2). 

The lethal effect of 3H decays orig- 
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The lethal effect of 3H decays orig- 

inating in DNA labeled with L3H]dT is 
greater than that of decays originating 
elsewhere in a mammalian cell nucleus 
(3), and this is usually attributed to the 
various dose distributions that result 
from different sites of 3H incorporation 
(1, 3). Although many experiments in 
bacteria (4, 5) and mammalian cells 
(6) are explicable in terms of energy 
deposited by / particles from 3H, 
results that can be ascribed to trans- 
mutation processes have been detected 
in bacterial mutagenesis (5) and in in- 
activation of transforming DNA (7). 
In the latter, 3H decays from [3H]dT- 
labeled transforming DNA produced 
0.3 DNA strand break per decay and 
only inactivated genetic markers on the 
strand in which the decay originated 
(7). 

We have studied DNA breakage in 
mammalian cells from 3H decays orig- 
inating in DNA thymine to determine 
whether efficiency of breakage is simi- 
lar to that in transforming DNA. Also 
we have determined the effective 3'H 
radiation dose in comparison to x-rays 
and the extent of strand break repair. 
Chinese hamster V79 cells were labeled 
with [methyl-3H]dT by growth for one 
generation time (15 hours) in Eagle's 
medium plus 10 percent fetal calf serum 
containing 10- ~M deoxycytidine and 
[3H]dT (0.1 to 1 /tc/ml, 0.1 to 1 
c/mmole) or [methyl-14C]dT (0.3 tLc/ 
ml, 55 mc/mmole). Labeled cells sus- 
pended in growth medium with or 
without 5 percent dimethyl sulfoxide 
were frozen to -196?C at a rate of 1 
deg/min and stored for various periods 
in liquid nitrogen. Portions containing 
known numbers of cells were washed 
in 10 percent trichloroacetic acid 
(TCA) at 5?C and digested in 5 
percent TCA (1 hour at 90?C), and 
radioactivity was counted with the use 
of a water-miscible counting mixture 
(Aquasol). Counting efficiencies were 
determined by channel ratio methods 
and by the addition of internal [3H]- 
toluene standards. The specific activity 
of the cells was calculated as disinte- 
grations per cell per day (standard de- 
viation, 10 percent). Cells labeled with 
[14C]dT were irradiated with x-rays 
(300 kv-peak, 750 r/min) while frozen 
in liquid nitrogen and then stored in 

liquid nitrogen for later study. The dose 
rate was determined with the use of 
lithium fluoride thermoluminescent 
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cells were thawed in a water bath at 
37?C (9). When only a small ice frag- 
ment still remained in the thawing cell 

suspension, the vials were put into an 
ice bath. This procedure, which took 
less than 1 minute, was adopted to mini- 
mize strand break rejoining that might 
occur during thawing. Some thawed 

samples were diluted with 15 volumes of 
warmed conditioned medium and left 
at 37?C for various times up to 3 hours 
to allow cell metabolism to act on 3H 

damage. Weight-average molecular 

weights (M,,) of DNA in thawed cells 
were then determined by alkaline 
sucrose gradient centrifugation as de- 
scribed, with DNA from bacteriophage 
T4 as a standard (10). 

Radiation-induced strand breaks 
caused a progressive decrease in mo- 
lecular weight of DNA with increasing 
doses of x-rays or 3H decays (Fig. 1). 
Storage at --196?C for periods of as 
long as 30 days after x-irradiation pro- 
duced no additional change in molecu- 
lar weight. No strand breaks from 14C 
decays in frozen cells were detected in 

samples in which fewer than 104 decays 
per cell had occurred. For 3H decay 
and x-irradiation, there is a linear rela- 
tion between dose and 1/Mw, as re- 
ported for x-rays (11). The linear rela- 
tion for 3H depends, however, to a 
large extent on data for only the high- 
est dose rate (9500 decays per cell per 
day). At low doses (less than 4 X 104 
decays per cell) it appears possible that 
the rate of strand breakage per decay 
may be less than that obtained at the 
highest dose. 

From the slope of the curves in Fig. 
1, the single-strand breakage efficiency 
of 3H is 2.1 ? 0.2 breaks per decay, 
and that for x-rays is 1 break per 
15 ? 8 ev (12). The latter value is in- 

dependent of the presence of dimethyl 
sulfoxide and is larger than that ob- 
tained for unfrozen cells, 1 break per 
44 to 70 ev (11). By this comparison 
one 3H decay is equivalent to 0.48 - 
0.06 rad in terms of DNA strand 
breaks. If the normal definition of dose 
(that is, energy deposited per unit 
volume) is applied to 3H decays, then 
the expected dose for this cell would be 
0.38 ? 0.04 rad per decay (13). These 
two independent estimates are very 
close, which suggests that the concept 
of a dose to the nucleus is applicable 
for radiation with ranges as short as 
that of 3H. 

Rosenthal and Fox (7) obtained a 
lower strand-break efficiency of 0.3 
break per decay in frozen solutions of 
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Table 1. Fraction of initial strand breaks 
remaining after growth at 37?C. Cells were 
thawed from liquid nitrogen (- 196?C) 
after, (5 to 8.4) X 105 3H decays have oc- 
curred. Means and standard errors were de- 
termined from the ratio of the initial mo- 
lecular weight to that at various times after 
thawing (15). 

Time at Fraction of 37?C 
(minutes) initial strand breaks (minutes) 

0 1.00 
15 0.49 ? 0.04 
40 0.31- ?0.03 
60 0.26 - 0.04 

105 0.19 ? 0.05 
165 0.14 ? 0.02 

transforming DNA, possibly because / 
particle irradiation of DNA was re- 
duced in their dilute solutions and local 
effects arising from 3H transmutation 
effects predominated. If their value of 
0.3 break per decay represents an 
upper limit for strand breaks resulting 
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from local transmutation effects, then 
in our experiments an average of at 
least 1.8 breaks per decay (or 85 per- 
cent of the breakage) would be due to 
the p particles in the frozen state. The 

precise dose per decay will, however, 
depend on the volume of the nucleus 

containing [3H]dT-labeled DNA (14), 
and experiments with other cell types 
might not give exactly the same dose. 

The strand breaks caused by 3H 

decays are rejoined rapidly, with a 
half-time of about 15 minutes after cells 
are thawed (Table 1). This is very 
similar in rate and extent to the rejoin- 
ing seen at 37?C for cells irradiated with 

x-rays (15) and indicates a rapid return 
to apparently normal metabolism during 
recovery from the frozen state. There- 
fore, our data indicate that damage re- 
sulting from decays in [3H]dT in DNA 
is no more than that predicted for irradi- 
ation by the ,/ particles, and that the 
kinetics of repair damage are similar 
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Fig. 1. Reciprocal weight-average molecular weight as a function of "H decays or x-ray 
dose. All cells were frozen in 5 percent dimethyl sulfoxide (DMSO) except where 
indicated. The controls were cells labeled with ["C]dT and centrifuged at 11,500 or 
25,000 rev/min; each control point is the mean of three determinations. All other 
samples were centrifuged at speeds between 11,500 and 25,000 rev/min, with no de- 
pendence of data on centrifugation speed. The standard deviation of each specific 
activity is ?-10 percent. Cells were x-irradiated in liquid nitrogen 
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to those for external ionizing radiation. 
Thus, the decays of 3H in DNA do not 
appear to cause amounts of breakage or 
irreparable breaks greater than those 
expected for f3 particle irradiation. 
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serially cultivated they retain their nor- 
mal characteristics for a limited period; 
during this time they are termed a cell 
strain (1). Cell strains are either lost 
after a variable number of subcultiva- 
tions (2), or they spontaneously develop 
altered morphology, karyotype, and 

growth properties (which include un- 
limited capacity for multiplication) char- 
acteristic of cell lines (3, 4). The ease 
of spontaneous establishment of a cell 
line appears to be species-dependent; 
spontaneous establishment of a cell line 
from a human cell strain rarely if ever 
occurs (2), while in practically all cases 
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murine cell strains develop spontane- 
ously into cell lines within 3 months of 
culture (3, 4). When cultivated under 
conditions of extensive cell-to-cell con- 
tact, spontaneously established lines of 
mouse cells usually have, in addition to 
abnormal in vitro growth properties, in 
vivo malignant potential (4-6). We 
have reported that activated peritoneal 
macrophages from mice, unlike nor- 
mal macrophages, appear to cause in 
vitro the selective destruction of cells 
with abnormal growth properties-that 
is, tumor cells and a cell line-by a 

nonimmunologic mechanism (7-9). We 
have suggested that the activated macro- 
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phage may have a homeostatic role in 
destroying cells that develop abnormal 
growth properties in vivo (9, 10). 

In the experiments reported here we 
used mouse fibroblasts as target cells, 
before and after spontaneous trans- 
formation, and showed an altered in 
vitro reactivity of the activated macro- 
phages to newly established lines of 
mouse fibroblasts. We report that the 
cytotoxocity of activated C3H/HeJ 
macrophages for fibroblast target cells 
appeared to be related to the acquisi- 
tion of abnormal growth properties by 
the fibroblasts, which include loss of 
contact inhibition of cell division, rath- 
er than to antigenic differences between 
the activated macrophages and target 
cells. Activated C3H/HeJ macrophages 
did not destroy allogeneic fibroblast cell 
strains that have cell surfaces of high 
immunogenic potential, but were mark- 
edly cytotoxic to both syngeneic and 
allogeneic cell lines. We propose that 
the cytotoxic effect of activated macro- 
phages for fibroblast cell lines that have 
developed under subcultivation condi- 
tions of extensive cell-to-cell contact 
may reflect a fundamental host reaction 
to abnormal cell growth. 

Primary cultures of mouse fibroblasts 
were prepared from 17- to 19-day em- 
bryos by the method of Reinhold (11). 
Cells were cultured in Eagle's minimal 
medium with Earle's salts, streptomycin 
(100 /Ag/ml), penicillin (100 unit/ml), 
and 10 percent fetal calf serum (Gibco, 
Berkeley, California). All cultures were 
maintained on a rigid transfer schedule 
in 950-ml prescription bottles, subcul- 
tures at a 1: 2 ratio being made every 
7 days. Medium was changed on day 3. 
Cells were detached for transfer by 
adding 0.25 percent trypsin to the 
monolayers and incubating for 15 
minutes at 37?C. Action of trypsin was 
stopped by adding 4 ml of medium con- 
taining serum. When spontaneous trans- 
formation to a cell line occurred, 
changes in morphology and growth 
characteristics included loss of fusiform 
shape and parallel orientation of the 
fibroblasts, cell overgrowth, increased 
saturation density, and ability to grow 
at low inoculation density. By these 
criteria, cell lines were present by sub- 
culture 16 in the case of C57BL/6J 
fibroblasts, by subculture 17 for BALB/c 
fibroblasts, and by subculture 20 for 
C3H/HeJ fibroblasts. 
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To activate macrophages, female 
C3H/HeJ mice were chronically in- 
fected with Toxoplasma gondii (7) or 
treated with complete Freund's adjuvant 
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Control of Carcinogenesis: A Possible Role for the 

Activated Macrophage 

Abstract. Cytotoxic activity of activated mouse macrophages against mouse 

embryo fibroblasts was tested before and after spontaneous transformation of 

the fibroblasts in vitro. Activated macrophages caused little or no destruction of 

untransformed fibroblasts but were markedly cytotoxic to the same fibroblasts 
after spontaneous transformation. The efferent limb of this cytotoxic reaction 

appears to be nonimmunologic and to be related to abnormal growth properties 
rather than to the antigenic composition of target cells. 
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