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lowing the possibility of limit cycles wherein 
the minimum in the prey population remains 
large enough for its Allee effect not to 
operate. 

19. This estimate is obtained from Eq. 2 on the 
assurption that the rates r and b are com- 
parable, that x*/K << 1, and that cx*, fx* 
are less than, or of the order of, unity (x* 
and y* are the populations satisfying dx/dt = 
dy/dt = 0). One may then obtain rough piece- 
wise continuous approximations for the limit 
cycle trajectory xt(t), yt(t) in the four regions 
where xt(t) and yt(t) are small or large as 
compared with the (unstable) equilibrium 
point values x*, y*. I have tested the use- 
fulness of this estimation procedure, which 
leads to Eq. 10, by comparing it with a 
series of exact computer solutions for the 
limit cycle. The approximation given in Eq. 
10 gave good order-of-magnitude agreement 
in every case tested. 

20. For example, see (5). On the other hand, 
R. H. MacArthur (personal communication) 
has empirically noticed limit cycle behavior 
in computer studies of such models. 
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Rosenzweig has warned that enrich. 

ment may destroy predator-prey systems 
(1). Using the graphical predation 
theory he and MacArthur developed 
(2), Rosenzweig has predicted that en- 
richment may cause previously persist- 
ent ecological systems to explode. This 
will happen, he says, when enrichment 
shifts the peak of the prey zero isocline 
(the collection of points in the phase 
plane at which the prey population does 
not change in density) to the right of 
the predator zero isocline. McAllister 
et al. (3) have challenged this prediction 
on experimental grounds. In this techni- 
cal comment I shall show that Rosen- 
zweig's own models do not fully support 
his conclusions, that the theory on 
which his arguments are based was in- 
complete and insufficient, and that there 
is therefore no inconsistency here be- 
tween theory and experiment. 

Rosenzweig studied what he believed 
to be six reasonable deterministic 
models of predator-prey interaction (1). 
He concluded that all show danger of 
extinction with increasing enrichment. 
He particularly concentrated on the fol- 
lowing model [model 4 in (1)]: 

dV/dt = rV(l - V/K) - kP(l - e-?) 
(1) 

dP/dt = AkP(e-" - e"-) (2) 

where V is the prey (victim) density, 
P is the predator density, and K is the 
carrying capacity of the prey. The pred- 
ator zero isocline is at V = J. The 
other parameters in Eqs. 1 and 2 in- 
fluence the shape of the prey zero iso- 
cline and the rate of the system's re- 
sponse. 

Investigating Eqs. 1 and 2, Rosen- 
zweig first shows that the prey zero 
isocline conforms to the expectations of 
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Investigating Eqs. 1 and 2, Rosen- 
zweig first shows that the prey zero 
isocline conforms to the expectations of 

graphical predation theory; that is, it 
is peaked. He next shows that enrich- 
ment, increased K, moves this peak to 
a larger value of V and that it may 
therefore move it to the right of the 
predator zero isocline. According to 
graphical predation theory, he then 
predicts that this may cause the popula- 
tions to go to extinction. Rosenzweig 
numerically integrates Eqs. 1 and 2 and 
finds that, for a large value of K, this 
does indeed happen. 

I have used a digital computer to 
study the behavior of Eqs. 1 and 2. My 
results are not in complete accord with 
Rosenzweig's predictions. I find that 
the populations do not go to extinction 
when the peak of the prey zero isocline 
lies to the right of the predator zero 
isocline. 

The numerical values of the parame- 
ters in Eqs. 1 and 2 are relatively un- 
important, so I have chosen the follow- 
ing numbers so as to make my system 
quantitatively similar to the system 
Rosenzweig depicts in figure 1 of (1): 
r=0.05; k = 0.025; c=0.1; A = 1; 
and J = 20. For a single predator zero 
isocline, I determined the dynamic re- 
sponse for five different prey zero iso- 
clines (Fig. 1A). Figure lB shows a 
system for which the enrichment is too 
low: the predator population goes to 
extinction. Figure 1, C and D, shows 
stable systems that approach a steady 
state at the point where the two zero 
isoclines intersect. These results are in 
accord with graphical predation theory. 

Figure 1, E and F, shows systems 
that, according to graphical predation 
theory, may go to extinction. Obviously, 
they do not. Both reach stable limit 
cycles. In fact, no matter how great K 
may be, the populations modeled by 
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Eqs. I and 2 will never go to extinc- 
tion (4). Other reasonable determinis- 
tic models of predation show analogous 
behavior; for example, Rosenzweig's 
model 6 (1), Gilpin's model (5), and 
apparently the model of McAllister et 
al. (3), although it is not clear whether 
the prey refugium was critically neces- 
sary. 

The flaw in Rosenzweig's arguments 
lies not in the mathematics of (1), but 
in the development of graphical preda- 
tion theory (2), which, as it stands, is 
insufficiently developed to permit pre- 
dictions about global stability. Solutions 
to systems of autonomous differential 
equations, such as Eqs. 1 and 2, are 
trajectories in a phase plane. Such 
systems are globally stable if no trajec- 
tory that starts at positive P and V 
either crosses or asymptotically ap- 
proaches one of the axes. 

The phase plane of such systems con- 
sists of normal points, at which solu- 
tion trajectories exist and are unique, 
and singular (equilibrium) points, 
which are defined by (6) 

dP/dt = dV/dt = 0 

Biologically, it is possible to sketch in 
several of these trajectories. There is 

one along the ordinate that corresponds 
to the dying off of the predator in the 
absence of prey. There are two others 
on the abscissa that in the absence of 
predators logistically approach the 
carrying capacity, K, from either side. 
Because solution trajectories must be 
unique at all normal points, no trajec- 
tory that starts at positive P and V can 
intersect the axes at any point that lies 
on these trajectories. Thus, if one of 
the populations is to go to zero, it 
must do so at one of the singular points 
that lie on the axes. 

Systems such as those shown in Fig. 
1, C-F, have three singular points: 
(0,0), (K,0), and the intersection of 
the two zero isoclines. It is obvious that 
the first two of these singular points 
are saddle points. Near the point (0,0), 
solutions first move downward parallel 
to the ordinate and then curve to move 
outward along the abscissa. Near (K,O), 
solutions first move parallel to the 
abscissa and approach V=K from 
either side, whereupon they turn up- 
ward to increase P. Therefore, solution 
trajectories can nowhere intersect the 
axes. It is also clear that cycles very 
near the axes will spiral inward, for, if 
a trajectory starts from a value of V 

greater than K, it will fall below K 
after it completes its first cycle. This 
is shown in Fig. 1, C-E. 

By studying the third singular point 
of the system, as Rosenzweig has done, 
it is possible to predict that this singular 
point will be unstable if the peak of 
the prey zero isocline is to the right of 
the predator zero isocline, which im- 
plies that solution trajectories will spiral 
outward from this point. Thus a com- 
plete graphical predation theory predicts 
that stable limit cycles must exist where 
the outwardly spiraling, small-amplitude 
cycles meet the inwardly spiraling, 
large-amplitude cycles. 

The careful analysis of some reason- 
able deterministic models of predation 
suggests that ecological systems will 
persist after enrichment. This does not 
mean, however, that Rosenzweig's 
warning can or should be ignored. 
Systems such as that shown in Fig. 1F, 
although mathematically stable, could 
give rise to biologically unrealistic popu- 
lation densities, for example, less than 
one individual. Furthermore, if density- 
independent stochastic effects are added, 
such limit cycles would be susceptible 
to random extinction. Finally, Rosen- 
zweig has noted (7) that if the idea of a 
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Fig. 1. (A) In the phase space in which predator density P is plotted against prey (victim) density V, the predator isocline is at V = 20 and five different values of K (K = 15, 34, 48, 60, and 80) give five different prey isoclines. In (B) through (F) the dynamic response for a particular starting configuration is shown for a single one of these values for K. Each dash and blank represents 20 iterations of Eqs. 1 and 2. The cycles are counterclockwise. (B) The predator population goes to extinc- tion. (C) The two populations reach a steady state. (D) The two populations asymptotically approach a steady state. (E) The system reaches a stable limit cycle, both from within and without. (F) Again, the system reaches a stable limit cycle. 
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maximum predator life-span is included, 
this will perhaps make the model dis- 
cussed above unrealistic during that part 
of the limit cycle where the victim 
density is very low. 

MICHAEL E. GILPIN 
Department of Population and 
Environmental Biology, University of 
California, Irvine 92664 
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Most of what Gilpin says is quite 
right. Extinction in my simulation of 
model 4 is caused by a truncation; 
mathematically, model 4 does indeed 
reach a limit cycle. However, that trun- 
cation was designed into the system for 
the sake of biological reality; I main- 
tain that it was proper to do that and 
proper to issue the warning based on 
it. The value of V at the low point of 
the cycle is just unrealistically small. 
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model 4 is caused by a truncation; 
mathematically, model 4 does indeed 
reach a limit cycle. However, that trun- 
cation was designed into the system for 
the sake of biological reality; I main- 
tain that it was proper to do that and 
proper to issue the warning based on 
it. The value of V at the low point of 
the cycle is just unrealistically small. 

Riebesell (1) has undertaken simu- 
lations of a systematic series of two- 
species exploitative systems. He has in- 
cluded random environmental fluctua- 
tions. In general, he finds that the non- 
trivial equilibria of exploitative systems 
can be roughly sorted into four types. 
The first includes those in which the 
victim's equilibrium V (that is, V) is 
so close to K that simulated uncertain- 
ty produces rapid predator extinction. 
The second includes those with slightly 
lower V; they are steady states despite 
the randomness. The third type is a 
band of still smaller V values; these pro- 
duce the limit cycles of Gilpin. The last 
type includes the smallest values of V, 
values so low that their associated limit 
cycles are unrealistic; either or both 
species become extinct. Cases of this 
last type correspond to ones in which 
strong enrichment is simulated, because, 
as I showed in my report (2), an increase 
in K has the same effect on stability 
as a decrease in V. Thus a totally realis- 
tic approach to the problem demands 
that one deal with the probability that 
enrichment can meaningfully increase 
extinction rates. 

In addition to that, even a change 
from a steady state to an oscillation is 
worthy of the concern of resource man- 
agers. Oscillation would produce its 
own problems: among them are fluctu- 
ations in the food supply, fluctuations 
in the labor market, and the need for 
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storage facilities to damp the effect of 
the oscillation on consumers. 

In defense of MacArthur's and my 
original work (3), it should be stated 
that we noted the problem of global 
stability therein. The section devoted to 
it included several cases in which we de- 
duced the existence of limit cycles. We 
also admitted that graphical theory was 
incomplete without a clear understand- 
ing of global stability. 

I should add that Gilpin's proof of 
limit cycles is unconvincing. It depends 
on the assumption that, in order to 
reach extinction, a population must 
ride a vector which intersects an axis. 
That is not so. The vector might reach 
a confluence with the axis-merge with 
it without crossing it. 

May (4) has developed a convincing 
argument for the generality of limit 
cycles. Therefore, Gilpin's conclusion is 
perfectly accurate. 

M. L. ROSENZWEIG 
Department of Biology, University of 
New Mexico, Albuquerque 87106 
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Meetings Meetings 

Immunology and Genetics 

Thirty West Coast geneticists met 
with specialists in various fields of im- 
munology at La Jolla, California, 25- 
26 February, to explore research and 
clinical aspects of the interface of im- 
munology and genetics. The workshop- 
symposium was supported by the Na- 
tional Genetics Foundation. 

Genetic control of immune respon- 
siveness to specific antigens and the 
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possible relation of such control to 
histocompatibility systems of mice, 
guinea pigs, and man were considered 
first. The antibody response involves a 
complicated interaction between thy- 
mus-derived antigen-reactive lym- 
phocytes (T cells) and bone mar- 
row-derived, antibody-producing cell 
precursors (B cells). A T cell capable 
of recognizing the specific immunogen 
seems to stimulate proliferation of and 
specific antibody production by B cells, 
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Immune response (Ir) genes and anti- 
gen recognition were discussed by H. 
0. McDevitt (Stanford) and B. Bena- 
cerraf (Harvard). For some Ir genes, 
both responder (R) and nonresponder 
(NR) strains of mice and guinea pigs 
give a primary 19S response, but only 
R strains give a 7S secondary response. 
T cells appear to respond to "carrier" 
determinants on a given antigen, while 
the structure of the antibody combining 
site (idiotype) is a function of the 
structural genes for the immunoglobu- 
lins and is expressed in B cells. Genetic 
loci controlling graft rejection and 
amount of antibody produced and af- 
fecting antibody specificity map in 
a region of mouse linkage group IX. 
Ir maps between H-2K and H-2D, the 
two well-separated cistrons of the ma- 
jor histocompatibility system in the 
mouse (homologous with the LA and 
Four cistrons in the human HL-A sys- 
tem). Ir seems to comprise a set of 
several or many linked genes with dif- 
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